Risk Mitigation Work Plan for the Proposed Fairfield Jail/Public Safety Facility 334 West Wheeling Street Lancaster, Ohio

ОШО Submitted to: Fairfield County Board of Commissioners 210 East Main Street

Lancaster, Ohio 43130 Prepared by: Bennett & Williams Environmental Consultants, Inc. 98 County Line Road West, Suite C Westerville, Ohio 43082 (614) 882-9122

April 28, 2015

RELIABILITY OF REPORT - DISCLAIMER

Conclusions reached in this report are based upon the objective data available to the CONSULTANTS at the time of forming their opinions and as presented in the report. The accuracy of the report depends upon the accuracy of these data. Every effort is made to evaluate the information by the methods that generally are recognized to constitute the state of the art at the time of rendering the report and conclusions, and the conclusions reached herein represent our opinions. Subsurface conditions are known to vary both in space and time, and there is inherent risk in the extrapolation of data.

THE CONSULTANTS are not responsible for actual conditions proved to be materially at variance with the data that were available to them and upon which they relied, as presented in the report.

The opinions, conclusions and recommendations shown in the report are put forth for a specific and proposed purpose and for the specific site discussed. The CONSULTANTS are not responsible for any other application, whether of purpose or location, of our opinions, conclusions and recommendations other than as specifically indicated in the report.

EXECUTIVE SUMMARY

On December 15, 2014, the City of Lancaster instituted an Interim Policy for Development within the Wellhead Protection Zones. At that time, Fairfield County had been developing plans for siting a new Public Safety Facility/Sheriff's Office at 334 West Wheeling Street, Lancaster, Ohio and the plans were mostly completed. The proposed location is situated within the one-year time-of-travel to the Miller Park Wellfield.

In March, 2014, Fairfield County had engaged Bennett & Williams Environmental Consultants, Inc. to perform a limited Phase II Environmental Assessment for the area under the proposed new building footprint (prior to the institution of the Lancaster Interim Policy). A portion of this report included preparation of a site specific risk assessment that evaluated pathways of exposure to workers and residents at the proposed jail facility. This document can be accessed at http://www.co.fairfield.oh.us/COMMISH/jail lpiesa report.pdf.

The City of Lancaster reviewed this document and requested that, due to the proximity of the Miller Park Wellfield to the site, the soil leaching to groundwater pathway for offsite receptors also be evaluated as a precaution. Anticipating that this analysis might show that this pathway was complete and that the property specific risk assessment might show a risk to the wellfield, the City requested that a Risk Mitigation Work Plan be prepared for the site in accordance with the new Interim Policy requiring a work plan for all risks identified as a result of a property specific risk assessment.

The results of the property specific risk assessment using the leaching model showed that under both current conditions and proposed post-construction conditions, that none of the eight constituents leached to groundwater in 100 years, the standard time period used in leaching assessments. These results were obtained despite the fact that the most conservative input parameters were used to reach these results. Therefore, based on the results of the leaching model, no risk to the Miller Park wellfield was found.

However, the results of the property specific risk assessment showed that risks were posed by fill materials at the site to construction/excavation workers due to dermal exposure to arsenic and inhalation exposure to mercury. Fairfield County will require, as part of the bid documents, that contractors develop a health and safety plan to address these risks. The risk from arsenic can be managed by limiting construction/excavation workers to no more than 90 fulltime days onsite or by requiring workers (as part of a health and safety plan) to wear gloves and long sleeves. Similarly, the risk from mercury can be managed (as part of a health and safety plan) by limiting either the number of hours and/or the number of days of exposure for the worker to no more than 200 fulltime days.

Due to the proximity of the Miller Park Wellfield and the importance of protection of the aquifer, Fairfield County also proposes additional voluntary measures designed to minimize any impact to the aquifer both during and after construction of the proposed construction of the Fairfield County Jail/Public Safety Facility. These measures include: "casing off" the fill materials as part of the construction of the auger cast piles to minimize the downward transport of fill materials into the aquifer; having an environmental professional onsite during excavation activities to confirm that the fill does not contain materials subject to additional regulation; managing all fill materials onsite in areas where fill is already present; and disposing of excess fill materials offsite, if needed, at a solid waste disposal facility. These measures are in addition to many other items specifically requested by the City of Lancaster and already incorporated in the plans and specifications.

TABLE OF CONTENTS

DISCLAIM	ER			<u>Page</u> i
				····· *
EXECUTIV	E SUM	MARY		ii
LIST OF T	ABLES			v
LIST OF F	IGURES			vi
LIST OF A	PPENDI	CES		vi
1. INT	RODUC '	ΓΙΟΝ		1
	1.1		uction	
	1.2	Lanca	ster Interim Policy Criteria Triggering the Need for	
		a Prop	erty Specific Risk Assessment (PSRA)	1
	1.3		ster Interim Policy Criteria Triggering a Risk	
			tion Work Plan	2
2. ANA	LYTIC	AL RES	SULTS	3
	2.1	Soil Re	esults	3
		2.1.1	Soils Analyzed During the 2014 Limited Phase II	
			Environmental Assessment	3
			2.1.1.1 TCLP Metals, VOCs and SVOCs	
			2.1.1.2 Target Analyte List Metals	5
			2.1.1.3 Target Compound List Volatile Organic	7
			Compounds	/
			2.1.1.4 Target Compound List Semi-Volatile Organic	7
			Compounds2.1.1.5 GRO and DRO	12
		2.1.2	Soils Analyzed During the 2015 Installation of	
			Monitoring Wells MW-9S and MW-9D	12
			2.1.2.1 Inorganic Compounds	13
			2.1.2.2 Volatile Organic Compounds	
			2.1.2.3 Synthetic Organic Compounds	13
		2.1.3	Soils Results Summary	
	2.2	Water	Results	17
		2.2.1	Water Analyzed During the 2014 Limited Phase II	
			Environmental Assessment	
			2.2.1.1 Target Analyte List Metals	19

		2.2.1.2 Target Compound List Volatile Organic	
		Compounds	22
		2.2.2 Water Results Summary	
	2.3	Summary of Need for Property Specific Risk Assessment	
3.	RISK ASSE	ESSMENT FOR DERMAL AND INHALATION PATHWAYS .	25
	3.1	Introduction	25
	3.1	Site Orientation	
	3.2	Exposure Routes	
	3.4	Chemicals of Concern	
	3.5	Results of the Initial Risk Assessment based on Soil Data	
	0.0	3.5.1 Initial Evaluation of Potential Risks to Construction/	
		Excavation Workers	27
		3.5.1.1 Arsenic and Mercury	27
		2.2.1.2 Lead	27
		3.5.2 Initial Evaluation of Potential Risks to Current and	
		Future Adult Residents at the Fairfield County Jail/	
		Sheriff's Office	28
		3.5.3 Initial Evaluation of Potential Risks to Current and	
		Future Adult Workers at the Fairfield County Jail/	
		Sheriff's Office	28
	3.6	Results of the Risk Assessment for Jail Residents and	
		Workers based on Indoor Air Data	30
	3.7	Results of the Risk Assessment for Jail Residents and	
		Workers based on Soil Gas Data	31
	3.8	Air Sampling for Lead	
	3.9	Summary of Risks Posed by Soil and Air Exposure	
4.	RISK ASSE	CSSMENT FOR INGESTION PATHWAY	33
			22
	4.1	Introduction	33
	4.2	Risk Assessment of Soil Leaching to Groundwater	2.4
	4.2	Pathway	
	4.3	Summary of Risk to Water	34
5.	RISK MITI	TGATION WORK PLAN	38
	5.1	Risks Identified in the Property Specific Risk Assessment	38
	5.2	Construction Techniques and Practices to Mitigate the	
		Identified Risks	38
	5.3	Fairfield County Voluntary Measures Not Required by	
		the Lancaster Interim Policy	39
	DDDDDD		
6.	REFEREN	CES	40

LIST OF TABLES

		Page
1.	Required analytical parameters (Lancaster Interim Policy for Development	
•	within the Wellhead Protection Zones, December 15, 2014)	_2
2.	Analytical results for metals in soils compared to VAP residential generic	6
2	numerical direct contact soil values (OAC 3745-300-08) Appendix A, Table 1)	<u>6</u>
3.	"Target compound list" of VOCs analyzed in soil	8
4.	Analytical results for VOCs detected in soils compared to VAP residential	
	generic numerical direct contact soil standards (OAC 3745-300-08) Appendix	0
5	A, Table 1) "Target compound list" of SVOCs analyzed in soil	<u>9</u> 10
5. 6		10
6.	Analytical results for SVOCs detected in soils compared to VAP residential generic numerical direct contact soil standards (OAC 3745-300-08) Appendix	
	A Table 1)	11
7.	Analytical results for gasoline range organics (GRO) and diesel range	
1.	(CBO) in a^{1}	12
8.	Analytical results for metals in soils compared to generic numerical direct	12
0.	contact soil standards (residential land use category) in Appendix A to OAC	
	3745-300-08, Table 1	14
9.	Analytical results for organic compounds in soils compared to generic numerical	
	direct contact soil standards (residential land use category) in Appendix A to OAC	2
	3745-300-08, Table 1	15
10.	Analytical results for synthetic organic compounds in soils compared to VAP	-
	generic numerical direct contact soil standards for residential exposure	16
11.	Analytical results for dissolved metals in groundwater in the fill compared to VAI	P
	generic unrestricted potable use standards based on maximum contaminant	
	levels (OAC 3745-300-08 Appendix A, Table VI)	_20
12.	Analytical results for VOCs detected in groundwater in the fill compared to VAP	
	generic unrestricted potable use standards based on maximum contaminant	
	levels (OAC 3745-300-08 Appendix A, Table VI)	_23
	Exposure pathways for risk assessment	_26
14.	Initial results from the Johnson and Ettinger model showing vapor intrusion to	• •
	indoor air hazard quotients	_29
15.	Analytical results for inorganic chemicals for which Ohio EPA has generic	
1.0	leach-based soil values (OEPA, 2008)	35
16.	Analytical results for volatile organic chemicals for which Ohio EPA has generic	26
17		36
1/.	Analytical results for semi-volatile organic chemicals for which Ohio EPA has	27
	generic leach-based soil values (OEPA, 2008)	37

LIST OF FIGURES

		Page
1.	Soil sampling locations	_4
2.	Water sampling locations	18
3.	Time series of concentrations of arsenic in production well 28 in the Miller Park	
	Wellfield, March 5, 1992 through April 10, 20013 (Ohio EPA, 2013b)	21

LIST OF APPENDICES

- A Water Quality Data Ohio EPA
- B Time Series Data Water Quality
- C City of Lancaster Well Locations, Logs and Water Quality Data

SECTION 1 INTRODUCTION

1.1 Introduction

On December 15, 2014, the City of Lancaster instituted an Interim Policy for Development within the Wellhead Protection Zones. At that time, Fairfield County had been developing plans for siting a new Public Safety Facility/Sheriff's Office at 334 West Wheeling Street, Lancaster, Ohio and the plans were mostly completed. Pursuant to a meeting held on January 6, 2015 between officials from Fairfield County, the City of Lancaster, and Bennett & Williams employees, available documentation was prepared addressing all items within the Interim Policy. Due to the critical construction timeline, this information was compiled into four volumes and submitted to the City of Lancaster in both paper and electronic format on January 20, 2015. On January 23, 2015, a follow-up meeting was held to provide opportunity for the City of Lancaster to ask questions about the submittal. At this meeting, representatives of Fairfield County and the City of Lancaster as well as employees of Bennett & Williams and Burgess & Niple (hired to review the environmental information) were in attendance.

On March 3, 2015, the City of Lancaster forwarded a review of the information submitted on January 20, 2015 to Fairfield County. Among the items requested, the City stated "*Please prepare and submit a Risk Mitigation Work Plan detailing analysis and handling of excavated soils, and other proposed mitigation such as double-casing the proposed auger cast borings*". Fairfield County agreed to assess the need for a Risk Mitigation Work Plan in accordance with the Lancaster Interim Policy on Development within the Wellhead Protection Zones.

1.2 Lancaster Interim Policy Criteria Triggering the Need for a Property Specific Risk Assessment (PSRA)

The Lancaster Interim Policy on Development within the Wellhead Protection Zones requires that "soil and groundwater analysis shall include, at a minimum, the parameters listed on the attached Table 1" (also reproduced here as Table 1).

Once soil has been analyzed, the Lancaster Interim Policy specifies that "Soil analytical results shall be compared to the residential land use category generic numerical direct-contact soil standards found in Appendix A to the Ohio Administrative Code (OAC) 3745-300-08, Table 1." Similarly, once the groundwater is analyzed, the Lancaster Interim Policy specifies that "Groundwater analytical results shall be compared to the generic unrestricted potable use standards found in Appendix A to OAC 3745-300-08, Table VI".

According to the Lancaster Interim Policy, "for sites where soil and groundwater meet the Ohio VAP generic numerical standards found in Appendix A of OAC 3745-300-08 and as described above, no further action is required". However, the Lancaster Interim Policy states that "For sites where soil or groundwater samples exceed the Ohio VAP generic numerical standards found in Appendix A of OAC 3745-300-08, a property specific risk assessment (PSRA) must be conducted in accordance with the requirements of OAC 3745-300-09. For the purposes of the PSRA, the land use shall be residential and the groundwater shall be critical resource. The PSRA shall be conducted under the direction of an Ohio EPA VAP Certified Professional".

Inorganics	Volatile Organic Compounds	Synthetic Organic Compounds
Aluminum	Benzene	Alachlor (LASSO)-2051
Antimony	Carbon Tetrachloride	Atrazine-2650
Arsenic	Monochlorobenzene	Simazine-2037
Barium	1,2-Dichlorobenzene	
Beryllium	1,4-Dichlorobenzene	
Cadmium	1,2-Dichloroethane	
Chromium	1,1-Dichloroethene	
Cobalt	cis-1,2-Dichloroethene	
Copper	trans-1,2-Dichloroethane	
Cyanide	Dichloromethane	
Lead	1,2-Dichloropropane	
Magnesium	Ethylbenzene	
Mercury	Styrene	
Nickel	Tetrachloroethene	
Selenium	Toluene	
Silver	1,2,4-Trichlorobenzene	
Sodium	1,1,1-Trichloroethane	
Thallium	1,1,2-Trichloroethane	
Vanadium	Trichloroethene	
Zinc	Vinyl Chloride	
	Xylenes, total	

Table 1. Required analytical parameters (Lancaster Interim Policy for Development within the Wellhead Protection Zones, December 15, 2014).

1.3 Lancaster Interim Policy Criteria Triggering a Risk Mitigation Work Plan

The Lancaster Interim Policy specifies that <u>if</u> risks are identified by the property specific risk assessment, then a Risk Mitigation Work Plan needs to be prepared. According to the Interim Policy, "*The VAP Certified Professional in conjunction with the Structural Engineer and the Site Engineer shall prepare a Risk Mitigation Work Plan that recommends construction techniques and practices required to mitigate the risks identified in the PSRA. The Risk Mitigation Work Plan shall be submitted to the City for review. Upon approval by the City, techniques and practices proposed in the Risk Mitigation Work Plan shall be incorporated into the plans*".

SECTION 2 ANALYTICAL RESULTS

2.1 Soil Results

Onsite soils were sampled during two separate field events. First, fill materials were sampled during the 2014 Limited Phase II Environmental Assessment and analytical results presented in Bennett & Williams (2014a). Second, fill and native soil was sampled during the installation of two new onsite monitoring wells (MW-9S and MW-9D) in April 2015 (Bennett & Williams, 2015a). A summary of the analytical results and comparison to the residential land use category generic numerical direct-contact soil standards found in Appendix A to the Ohio Administrative Code (OAC) 3745-300-08, Table 1 are included in the following sections. The locations where samples were collected are shown in Figure 1.

2.1.1 Soils Analyzed During the 2014 Limited Phase II Environmental Assessment

Fill materials encountered during the Limited Phase II Environmental Assessment were analyzed for:

- 1) toxicity characteristic leaching procedure (TCLP) for metals, volatile organic compounds (VOCs) and semi-volatile organic compounds using EPA sample extraction Method 1311 and analytical Methods 6010B/7470A/8260B/8260C;
- 2) total concentration of "target analyte list" metals using EPA analytical Methods 6010B/7471A;
- total concentration of "target compound list" VOCs using EPA Methods 5035 and 5035A for sample collection, preservation, and handling in addition to EPA analytical Method 8260B;
- 4) total concentration of "target compound list" semi-volatile organics using EPA analytical Method 8270C; and
- 5) both "gasoline range organics" (GROs) and "diesel range organics" (DROs) using EPA analytical method 8015C.

Due to the fact that the initial environmental sampling was conducted in March 2014, prior to the adoption of the Lancaster Interim Policy, analyses of soil and water included many additional parameters not required in Table 1, but did not include all of the required analytes. Fairfield County flagged these parameters in the January 20, 2015 submittal to the City of Lancaster and indicated that soil samples were not analyzed for cyanide, Alachlor and Simazine. Similarly, groundwater samples were not sampled for cyanide, Alachlor, Atrazine and Simazine. Fairfield County explained that the reason that Alachlor, Atrazine, and Simazine had not been tested was because these compounds are all pesticides used for agricultural purposes. The reason no pesticides were analyzed is because the historical site information indicated that the property

Figure 1. Soil sampling locations. had been filled prior to World War II and no farming activities had taken place on the site in the ensuing years. Prior to World War II, pesticides were not manufactured. Similarly, the monitoring wells installed by the City of Lancaster on the site (MW4-S and MW4-D) as part of the source water protection program were sampled for cyanide, but all values were shown to be non-detect from 1995 through 2009 when sampling ended.

The City of Lancaster considered the information provided on January 20, 2015 and concluded in the March 3, 2015 comments on the submission that "Soil samples were not analyzed for cyanide, Alachlor, and Simazine, and therefore were not analyzed in accordance with the required parameters indicated on Table 1 of the policy. However, the analytical list used during the Limited Phase II ESA was comprehensive and reasonable based on the information available during the field investigation. Cyanide was not identified as a chemical of concern (COC) and Alachlor and Simazine are pesticides generally associated with agriculture and rural runoff. No further action is required".

Analytical results are presented and discussed in the following sections.

2.1.1.1 TCLP Metals, VOCs and SVOCs

The purpose of analyzing soils using the Toxic Characteristic Leaching Potential (TCLP) is to determine if the soil is a characteristic hazardous waste as determined by analyzing toxicity by leaching potential. This requires testing using the TCLP, Method 1311, to determine an extract concentration and comparison of that concentration to values in Table 1 of OAC 3745-51-24 to confirm the absence or presence of constituents above the listed values. This is described further in Bennett & Williams (2014a) (previously submitted to the City of Lancaster on January 20, 2015) and available on the Fairfield County Commissioner's website at http://www.co.fairfield.oh.us/COMMISH/jaillegiesa.report.pdf.

The summary in the Bennett & Williams (2014a) report states "Based on the analytical results for TCLP analyses of all regulated metals, VOCs and SVOCs, only two metals, cadmium and lead were detected above the laboratory reporting limit. However, no regulated compounds were detected above the regulatory limits set for designation of materials as hazardous waste in Table 1 of OAC 3745-51-24. Therefore, the fill materials at the site are not considered to be hazardous wastes". These results are presented here for completeness and informational purposes only. Soils analyzed by TCLP do not have residential land use category generic numerical direct-contact soil standards found in Appendix A to the Ohio Administrative Code (OAC) 3745-300-08, Table 1. Therefore, no additional analysis is required under the Lancaster Interim Policy.

2.1.1.2 Target Analyte List Metals

Seventeen samples were collected from ten borings for the 23 metals in the "target analyte list". Samples were collected in the fill from intervals ranging from 1.5 to 12 feet below the ground surface. Samples were analyzed by Methods 6010B and/or 7471A. Table 2 shows the analytical results, boring and depth from which the sample was collected, as well as the VAP generic numerical direct-contact soil standard for a single chemical for residential land use from

Table 2. Analytical results for metals ir	n soils compared to VAP	residential generic numerical	direct contact soil values (OAC 37	45-300-08 Appendix A. Table 1).

BORING NUMBER Depth	BW1 4-6 Ft	BW1 10-12 Ft	BW2 2-4 Ft	BW3 1.5-2 Ft	BW3 2-4 Ft	BW4 2-4 Ft	BW4 8-10 Ft	BW5 1-2 Ft	BW5 10-11 Ft	BW6 1-2 Ft	BW6 4-6 Ft	BW7 2-4 Ft	BW7 6-8 Ft	BW8 4-6 Ft	BW8 6-8 Ft	BW9 2-4 Ft	BW10 2-4 Ft	VAP generic numerical direct-contact Soil standard for a single
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	chemical - residential land use category.
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aluminum	7500	5800	5700	2600	6500	4,500	6,800	4,000	11,000	4,700	4,600	5,700	4,500	5,600	5,300	6,100	1,400	None
Antimony	43	11	14	1.3	0.74 J	0.78 J	<6.0	0.69 J	0.97 J	<1.0	0.51 J	0.39 J	0.41 J	5.9	1.2	0.58 J	<0.82	63
Arsenic	18	94	22	7	12	8.8	36	11	34	3.6	6.8	7.1	9.2	460	23	12	1.9	12
Barium	450	3300	500	27	68 B	61	920	32	220	22	27	57 B	44 B	170 B	160 B	120 B	11 J B	None
Beryllium	0.68	0.56 J	0.34 J	0.11 J	0.46 J	0.21 J	2	0.27 J	0.80 J	0.17 J	0.25 J	0.26 J	0.37 J	0.43 J	0.39 J	0.62	0.058 J	310
Cadmium	1.4	6.4	6.8	0.39	0.43	0.25	2.6	0.53	6.5	0.16 J	1.9	0.41	0.33	4.1	3.3	1.3	0.062 J	140
Calcium	58000	60000	57000	7800	15000	4700	21000	36000	19000	2600	28000	5800	9100	12000	7900	10000	1400	None
Chromium	37	330	81	35	16	34	60	19	120	8.9	19	26	22	23	20	15	8.6	24
Cobalt	6.2	6.7 J	4.6 J	2.5 J	4.7 J	4.1 J	12	5.2	11	2.6 J	3.3 J	3.4 J	4.1 J	8.1	6.8	6.8	1.4 J	None
Copper	62	300	2300	61	36	58	360	40	77	10	21	96	74	56	41	31	8.7	6,300
Iron	24000	95000	45000	19000	22000	30000	150000	22000	91000	9900	15000	22000	28000	31000	22000	20000	8100	None
Lead	1100	2000	1600	18	41	32	1400	25	260	9.2	14	44	55	260	230	150	5.9	400
Magnesium	7800	13000	9200	3100	4800	640	3100	11000	3700	970	6300	1600	3000	3500	2700	3200	510	None
Manganese	470	860	680	170	400	620	790	370	760	150	220	450	380	440	380	560	91	None
Mercury	0.29	57	8	0.044J	0.080 J	<0.10	6.2	0.051 J	1.1	<0.12	0.017J	0.069 J	0.15	0.6	0.54	0.25	0.035 J	3
Nickel	24	34	14	25	27	37	56	44	36	7.7	14	34	37	26	28	43	10	3,100
Potassium	920	850 J	770	320 J	720 B	440 J	470 J	730	1700	650	660	530 B	490 J B	810 B	740 B	790 B	150 J B	None
Selenium	0.71	5.5	2.3	0.49	<0.51	0.54	2.3	<0.47	4.7	1.4	0.83	0.62	0.85	9.4	4.6	0.73	<0.41	780
Silver	1	3.7	0.23 J	<0.45	<0.51	<0.47	<0.60	<0.47	0.96 J	<0.50	<0.40	<0.45	<0.51	0.63	0.66	0.17 J	<0.41	780
Sodium	510 J	960 J	190 J	130 J	290 J	94 J	180 J	77 J	210 J	350 J	490	810	610	110 J	81 J	210 J	100 J	None
Thallium	<1.2	1.5 J	<0.96	<0.90	<1.0	<0.93	1.6	<0.93	1.2 J	<1.0	<0.80	<0.91	<1.0	<1.2	<0.87	<0.95	<0.82	NA
Vanadium	20	24	19	8.5	17	14	23J	14	30	12	15	10	10	18	13	16	4.6	None
Zinc	390	4500	1300	26	92	46	1000	71	700	19	34	100	66	500	300	150	11	47,000

B=Compound was found in the blank and sample = Exceeds Residential Standard in OAC 3745-300-08 Appendix A, Table 1

Appendix A of OAC 3745-300-08, Table 1. Note that the generic direct contact soil standard for chromium is for chromium VI (the most toxic form of chromium), even though the value for chromium represents total chromium. The laboratory results are included in Bennett & Williams (2014a). The results show that four constituents: arsenic, chromium, lead, and mercury exceed the residential VAP standards in at least one interval in at least one boring.

2.1.1.3 Target Compound List Volatile Organic Compounds

One sample was collected from each of the ten borings for the 48 VOCs in the "target compound list". Samples were collected from intervals ranging from the ground surface to 12 feet below the ground surface. Samples were analyzed by Method 8260B. Due to an oversight by Federal Express, the samples collected on March 21, 2014 from borings BW-7, BW-8, BW-9 and BW-10 were delivered to the laboratory late and were past the method holding time. These samples were analyzed, but additional samples were re-taken at the same intervals in companion borings BW-7A, BW-8A, BW-9A and BW-10A on March 31, 2014. Therefore, a total of 14 samples were analyzed.

Table 3 shows the 48 VOCs in the "target compound list" that were analyzed. Table 4 shows the analytical results only for those VOCs that were detected. Boring number and depth from which the sample was collected, as well as the generic numerical direct contact soil values for a single chemical for residential use from Appendix A of OAC 3745-300-08, Table 1 are also shown on Table 10. The laboratory results are included in Bennett & Williams (2014a). The results show that no VOCs were detected above the laboratory reporting limit, thus no generic numerical direct soil contact values were exceeded.

2.1.1.4 Target Compound List Semi-Volatile Organic Compounds

Seventeen samples were collected in the ten borings for the 65 SVOCs in the "target compound list". Samples were collected in the fill from intervals ranging from 1.5 to 12 feet below the ground surface. Samples were analyzed by Method 8270C. Table 5 shows the 65 SVOCs in the "target compound list" that were analyzed. Table 6 shows the analytical results, boring and depth from which the sample was collected, as well as the VAP generic numerical direct contact soil standard for a single chemical for residential land use from Appendix A of OAC 3745-300-08, Table 1. The laboratory results are included in Bennett & Williams (2014a). The results show that six constituents: benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene exceed the generic numerical direct contact soil standards in at least one interval in at least one boring.

1,1,1-Trichloroethane	Acetone	Ethylbenzene				
1,1,2,2-Tetrachloroethane	Benzene	Ethylene Dibromide				
1,1,2-Trichloro-1,2,2-	Bromoform	Isopropylbenzene				
trifluoroethane						
1,1,2-Trichloroethane	Bromomethane	Methyl acetate				
1,1-Dichloroethane	Carbon disulfide	Methyl tert-butyl ether				
1,1-Dichloroethene	Carbon tetrachloride	Methylcyclohexane				
1,2,4-Trichlorobenzene	Chlorobenzene	Methylene Chloride				
1,2-Dibromo-3-	Chlorodibromomethane	Styrene				
Chloropropane						
1,2-Dichlorobenzene	Chloroethane	Tetrachloroethene				
1,2-Dichloroethane	Chloroform	Toluene				
1,2-Dichloropropane	Chloromethane	trans-1,2-Dichloroethene				
1,3-Dichlorobenzene	cis-1,2-Dichloroethene	trans-1,3-Dichloropropene				
1,4-Dichlorobenzene	cis-1,3-Dichloropropene	Trichloroethene				
2-Butanone (MEK)	Cyclohexane	Trichlorofluoromethane				
2-Hexanone	Dichlorobromomethane	Vinyl chloride				
4-Methyl-2-pentanone	Dichlorodifluoromethane	Xylenes, Total				
(MIBK)						

Table 3. "Target compound list" of VOCs analyzed in soil.

Table 4. Analytical results for VOCs detected in soil compared to VAP residential generic numerical direct contact soil standards (OAC 3745-300-08 Appendix A, Table 1).

,					•							,			
BORING NUMBER	BW1	BW2	BW3	BW4	BW5	BW6	BW7	BW7A	BW8	BW8A	BW9	BW9A	BW10	BW10A	VAP residential generic
Depth	10-12 Ft	2-4 Ft	2-4 Ft	2-4 Ft	4-6 Ft	1-2 Ft	2-4 Ft	2-4 Ft	4-6 Ft	4-6 Ft	0-2 Ft	0-2 Ft	2-4 Ft	2-4 Ft	numerical direct contact soil
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	standard for a single chemical
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-Trichlorobenzene	<0.0035	<0.0029	<0.0037	0.00017 J B	0.00027 J B	<0.0035	<0.0029	<0.0025	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	150
2-Butanone (MEK)	0.0014 J	<0.011	<0.015	<0.013	<0.0097	<0.014	0.00085 J B	<0.010	<0.014	<0.0093	<0.011	<0.012	<0.013	<0.010	28,000
Acetone	0.0057 J	<0.011	<0.015	<0.013	0.0095 J	<0.014	<0.011	<0.010	<0.014	<0.0093	<0.011	0.0070 J	<0.013	<0.010	110,000
Isopropylbenzene	<0.0035	<0.0029	<0.0037	0.00060 J	<0.0024	<0.0035	<0.0029	<0.0025	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	None
Methyl acetate	0.0014 J	<0.0057	<0.0073	<0.0064	<0.0048	<0.0069	<0.0057	<0.0051	<0.0069	<0.0046	<0.0055	<0.0060	<0.0066	<0.0051	None
Methylene Chloride	<0.0035	0.00053 J	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0025	<0.0035	<0.0023	<0.0028	0.00041 J	<0.0033	<0.0025	750
Styrene	<0.0035	<0.0029	<0.0037	<0.0032	0.000093 J	<0.0035	<0.0029	<0.0025	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	870
Toluene	<0.0035	<0.0029	<0.0037	0.00021 J	<0.0024	<0.0035	<0.0029	<0.0025	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	820
J = Result is less than th	e Reporting	g Limit, bu	t greater th	an or equal to	the Maximu	m Detectio	on Limit and	the concent	ration is an	approxima	ate value				
B = Compound was four	nd in the bl	lank and sat	mple												

B = Compound was found in the blank and sample

1,1'-Biphenyl	4-Nitroaniline	Dibenzofuran
2,4,5-Trichlorophenol	4-Nitrophenol	Diethyl phthalate
2,4,6-Trichlorophenol	Acenaphthene	Dimethyl phthalate
2,4-Dichlorophenol	Acenaphthylene	Di-n-butyl phthalate
2,4-Dimethylphenol	Acetophenone	Di-n-octyl phthalate
2,4-Dinitrophenol	Anthracene	Fluoranthene
2,4-Dinitrotoluene	Atrazine	Fluorene
2,6-Dinitrotoluene	Benzaldehyde	Hexachlorobenzene
2-Chloronaphthalene	Benzo[a]anthracene	Hexachlorobutadiene
2-Chlorophenol	Benzo[a]pyrene	Hexachlorocyclopentadiene
2-Methylnaphthalene	Benzo[b]fluoranthene	Hexachloroethane
2-Methylphenol	Benzo[g,h,i]perylene	Indeno[1,2,3-cd]pyrene
2-Nitroaniline	Benzo[k]fluoranthene	Isophorone
2-Nitrophenol	bis (2-chloroisopropyl)	Naphthalene
	ether	
3 & 4 Methylphenol	Bis(2-	Nitrobenzene
	chloroethoxy)methane	
3,3'-Dichlorobenzidine	Bis(2-chloroethyl)ether	N-Nitrosodi-n-propylamine
3-Nitroaniline	Bis(2-ethylhexyl)	N-Nitrosodiphenylamine
	phthalate	
4,6-Dinitro-2-	Butyl benzyl phthalate	Pentachlorophenol
methylphenol		
4-Bromophenyl phenyl	Caprolactam	Phenanthrene
ether		
4-Chloro-3-methylphenol	Carbazole	Phenol
4-Chloroaniline	Chrysene	Pyrene
4-Chlorophenyl phenyl	Dibenz(a,h)anthracene	Dibenzofuran
ether		

Table 5. "Target compound list" of SVOCs analyzed in soil.

Table 6. Analytical results for SVOCs detected in soil compared to VAP residential generic numerical direct contact soil values (Appendix A OAC 3745-300-08 Table 1).

BORING NUMBER	BW1	BW1	BW2	BW3	BW3	BW4	BW4	BW5	BW5	BW6	BW6	BW7	BW7	BW8	BW8	BW9	BW10	VAP Residential Generic
Depth	4-6 Ft	10-12 Ft	2-4 Ft	1.5-2 Ft	2-4 Ft	2-4 Ft	8-10 Ft	1-2 Ft	10-11 Ft	1-2 Ft	4-6 Ft	2-4 Ft	6-8 Ft	4-6 Ft	6-8 Ft	2-4 Ft	2-4 Ft	Numerical Direct-Contact
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	Soil Standard for a Single
																		Chemical
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,1'-Biphenyl	<0.250	<53	0.016 J	0.0093 J	0.0066 J	0.040 J	<0.330	0.033 J	<0.57	<0.056	0.0067 J	0.036 J	0.049 J	0.016 J	0.023 J	0.013 J	0.025 J	1,600
2-Methylnaphthalene	0.033	3.7 J	0.047	0.045	0.038	0.19	0.1	0.091	0.096	0.028	0.033	0.12	0.55	0.09	0.13	0.057	0.12	460
Acenaphthene	<0.033	19	0.12	0.024	0.021	0.043	0.1	0.039	0.055 J	<0.0074	0.012	0.4	0.19	0.073	0.089	0.093	0.029	6,900
Acenaphthylene	<0.033	75	0.057	<0.0072	0.0044 J	<0.018	0.032 J	0.015	<0.076	<0.0074	<0.0073	0.016	0.024	0.036	0.039	0.013	<0.030	None
Acetophenone	<0.49	<110	<0.29	<0.11	<0.12	0.028 J	<0.66	<0.22	<1.1	<0.11	<0.11	0.027 J	0.088 J	<0.24	<0.3	0.012 J	<0.450	2,500
Anthracene	0.027 J	170	0.3	0.017	0.014	0.063	0.21	0.084	0.3	<0.0074	0.021	0.09	0.11	0.12	0.18	0.047	0.09	34,000
Benzaldehyde	0.0240 J	<110	0.063 J	<0.11	<0.12	<0.27	0.19 J	<0.22	<1.1	<0.11	<0.11	0.036 J	0.076 J	0.038 J	<0.3	0.024 J	<0.45	None
Benz[a]anthracene	0.15	420	1	0.2	0.15	0.87	1.8	0.62	6.1	0.034	0.13	0.81	0.69	0.98	1.1	0.43	0.91	12
Benzo[a]pyrene	0.46	370	1	0.32	0.25	1.6	3.2	0.97	5.4	0.33	0.2	1.6	1.3	1.2	1.5	0.81	2.2	1.2
Benzo[b]fluoranthene	0.41	420	1.4	0.58	0.37	2.5	3.9	1.6	5	0.57	0.33	1.9	2.1	1.7	2.7	1.3	3.4	12
Benzo[g,h,i]perylene	0.5	200	0.65	0.39	0.3	2.4	3	1.4	4.2	1.1	0.23	1.7	0.51	1.2	0.6	0.41	1.1	None
Benzo[k]fluoranthene	0.087	180	0.49	0.17	0.14	0.76	1.6	0.48	0.92	0.15	0.082	0.74	0.54	0.66	0.61	0.32	0.93	120
Bis(2-ethylhexyl) phthalate	<0.340	<75	<0.2	0.035 J B	<0.083	<0.19	<0.47	<0.15	<0.8	0.027 J B	0.1 B	0.043 J	0.063 J B	<0.17	0.064 J B	0.04 J B	<0.31	690
Carbazole	<0.25	<53	0.098 J	<0.054	<0.059	<0.13	<0.33	<0.11	<0.57	<0.056	<0.055	<0.11	<0.11	0.11 J	0.12 J	<0.057	<0.22	None
Chrysene	0.19	380	1.1	0.27	0.21	1.2	1.9	0.76	9.5	0.65	0.18	0.99	0.79	1.1	1.3	0.48	1.1	1,200
Dibenz(a,h)anthracene	0.33	59	0.18	0.095	0.064	0.54	0.72	0.3	3.6	0.24	0.06	0.38	0.14	0.27	0.17	0.1	0.24	1.2
Dibenzofuran	<0.25	27 J	0.071 J	0.017 J	0.013 J	0.066 J	0.061 J	0.037 J	0.050 J	0.016 J	0.012 J	0.084 J	0.14	0.039 J	0.065 J	0.026 J	0.044 J	None
Di-n-butyl phthalate	<0.34	<75	<0.2	<0.075	<0.083	<0.19	<0.47	<0.15	<0.8	<0.078	20.01 J	<0.16	<0.16	<0.17	<0.21	0.035 J B	<0.31	None
Fluoranthene	0.2	980	2	0.22	0.18	0.79	1.7	0.8	1.7	0.016	0.22	0.82	0.75	1.6	1.8	0.48	0.94	4,600
Fluorene	<0.033	67	0.1	0.0064 J	0.0061 J	0.021	0.056	0.021	0.1	<0.0074	<0.0073	0.08	0.056	0.039	0.057	0.017	0.043	4,600
Indeno[1,2,3-cd]pyrene	0.26	180	0.53	0.29	0.22	1.7	2.4	1	2.2	0.78	0.16	1.2	0.44	0.91	0.51	0.33	0.85	12
Naphthalene	<0.033	13	0.08	0.033	0.024	0.13	0.1	0.086	0.19	0.017	0.022	0.13	0.37	0.083	0.15	0.048	0.094	90
Pentachlorophenol	<0.74	<160	<0.44	<0.16	<0.18	<0.4	0.3 J	<0.33	<1.7	<0.17	<0.17	<0.34	<0.33	<0.36	<0.45	<0.17	<0.67	18
Phenanthrene	0.1	570	1.3	0.11	0.086	0.4	0.8	0.4	1.2	0.03	0.12	0.51	0.63	0.7	0.93	0.24	0.43	None
Pyrene	0.16	800	1.8	0.19	0.18	0.73	1.6	0.69	2.3	0.014	0.19	0.87	0.81	1.5	1.8	0.47	1	3,400
J = Result is less than the I	Reporting I	Limit, but g	reater than	or equal to	the Maxim	num Detect	ion Limit a	and the con	centration is	s an approx	imate valu	e						

B=Compound was found in the blank and sample

 \blacksquare = Exceeds Residential Standard in OAC 3745-300-08 Appendix A, Table 1

2.1.1.5 GRO and DRO

Two samples were collected for GRO (C-6 to C-10) and DRO (C-10 to C-28) from two separate borings. Samples were collected from the fill from depths of 6 to 8 and 8 to 9 feet below the ground surface. Samples were analyzed by Method 8015C. Table 7 shows the analytical results, boring and depth from which the sample was collected, as well as the Ohio EPA DERR petroleum action level for Category 1 (the most vulnerable category). Soil TPH (GRO) petroleum action levels range from 105 ppm (Category 1) to 600 ppm (Category 4) (Ohio EPA, 2005a). Soil TPH (DRO) petroleum action levels range from 380 ppm (Category 1) to 1156 ppm (Category 4) (Ohio EPA, 2005). The laboratory results are included in Bennett & Williams (2014a). The results show that no DERR petroleum action levels were exceeded.

Table 7. Analytical results for gasoline range organics (GRO) and diesel range organics (GRO) in soil.

BORING NUMBER	BW2	BW10	DERR						
Depth	8-9 Ft	6-8 Ft	Petroleum						
Sample Date	3/20/2014	3/21/2014	Action Levels						
PARAMETER	mg/kg	mg/kg	mg/kg						
Gasoline Range Organics [C6 – C10]	< 0.12	< 0.11	105*						
Diesel Range Organics [C10 – C28]	41	68	380*						
* Action levels are for Category 1 (the most conservative)									

Soils analyzed for DRO and GRO do not have residential land use category generic numerical direct-contact soil standards found in Appendix A to the Ohio Administrative Code (OAC) 3745-300-08, Table 1. Therefore, no additional analysis is required under the Lancaster Interim Policy.

2.1.2 Soils Analyzed During the 2015 Installation of Monitoring Wells MW-9S and MW-9D

As part of the drilling of the monitoring wells, fill was encountered in both monitoring well MW-9S and MW-9D as anticipated based on previous site investigations from 1999 through 2015 (Bennett & Williams, 2015a). One sample from the fill in each of the borings was collected and submitted for laboratory analysis of the analytes in Table 1 of the Lancaster Interim Policy on Development within the Wellhead Protection Zones. In addition, a till layer was encountered in MW-9D from 30 to 32 feet that may have been classified as either a silty clay or a clayey silt. Because the pilings for the building are anticipated to be as deep as 60 feet, and in order to be conservative, a sample was collected from this depth as well. Analytical results are presented in the following sections.

2.1.2.1 Inorganic Compounds

Three samples were collected from the two monitoring well borings for the twenty inorganic compounds in Table 1 of the Lancaster Interim Policy. Samples were collected in the fill from the 10-foot to 12-foot interval in MW-9S and the 4-foot to 6-foot interval in MW-9D. In addition, a suspected clay layer from 30 feet to 32 feet was sampled in MW-9D. Samples were analyzed by Methods 6010B, 7471A (mercury) and 9012B (cyanide). Table 8 shows the analytical results, boring and depth from which the sample was collected, as well as the residential land use category generic numerical direct-contact soil standards found in Appendix A to OAC 3745-300-08, Table 1. The laboratory results are included in Bennett & Williams (2015a). The results show that one constituent, arsenic (at 19 and 20 mg/kg), was detected above the Voluntary Action Program residential generic numerical direct-contact soil standard of 12 mg/kg.

2.1.2.2 Volatile Organic Compounds

Three samples were collected from the two borings for the twenty one volatile organic compounds in Table 1 of the Lancaster Interim Policy. Samples were collected in the fill from the 10-foot to 12-foot interval in MW-9S and the 2-foot to 4-foot interval in MW-9D. In addition, a suspected clay layer from 30 feet to 32 feet was sampled in MW-9D. Samples were analyzed by Method 8260B. Table 9 shows the analytical results, boring and depth from which the sample was collected, as well as the residential land use category generic numerical direct-contact soil standards found in Appendix A to OAC 3745-300-08, Table 1. The laboratory results are included in Bennett & Williams (2015a). The results show that no volatile organic compounds were detected and no residential generic numerical direct contact soil standards were exceeded.

2.1.2.3 Synthetic Organic Compounds

Three samples were collected from the two borings for the three synthetic organic compounds in Table 1 of the Lancaster Interim Policy. Samples were collected in the fill from the 10-foot to 12-foot interval in MW-9S and the 6-foot to 7-foot interval in MW-9D. In addition, a suspected clay layer from 30 feet to 32 feet was sampled in MW-9D. Samples were analyzed by Method 8141B. Table 10 shows the analytical results, boring and depth from which the sample was collected, as well as the fact that there are no residential land use category generic numerical direct-contact soil standards found in Appendix A to OAC 3745-300-08, Table 1. The laboratory results are included in Bennett & Williams (2015a). The results show that no synthetic organic compounds were detected.

Table 8. Analytical results for metals in soils compared to generic numerical direct contact soil standards (residential land use category) in Appendix A to OAC 3745-300-8, Table 1.

SAMPLE NUMBER	MW-9S	MW-9D	MW-9D	Residential Numerical
	FILL	FILL	NATURAL	Generic Direct Contact
5 1				Soil Standard for a Single
Depth	10-12 feet (mg/lxg)	4-6 feet	30-32 feet	Chemical (mg/ltg)
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	4000	8400	3900	None
Antimony	<1.0	<1.0	<0.96	63
Arsenic	19	20	9.4	12
Barium	23	99	58	None
Beryllium	0.27J	0.92	0.24J	310
Cadmium	0.58	0.66	0.41B	140
Chromium	7.3	40	5.9B	NA
Cobalt	7.2	8	6.4	None
Copper	22	270	16	6300
Cyanide	<0.60	<0.61	0.55	1,000,000
Lead	29	73	7.5	400
Magnesium	22000	4500	31000	None
Mercury	0.22	0.59	0.031JB	3.1
Nickel	22B	20B	21B	None
Selenium	0.87	1.6	0.44J	780
Silver	0.47J	0.14	<0.48	780
Sodium	230J	450J	150J	None
Thallium	0.68J	0.79J	0.72J	NA
Vanadium	14B	23B	11	None
Zinc	84	180	52B	47,000

J = Result is less than the Reporting Limit, but greater than or equal to the Maximum Detection Limit and the concentration is an approximate value

B=Compound was found in the blank and sample

Exceeds Residential Standard in OAC 3745-300-08 Table 1

Table 9. Analytical results for organic compounds in soils compared to generic numerical direct contact soil standards (residentialland use category) in Appendix A to OAC 3745-300-08, Table 1.

SAMPLE NUMBER	MW-9S	MW-9D	MW-9D	Residential Generic
	FILL	FILL	NATURAL	Numerical Direct Contact
Donth	10-12 feet	2-4 feet	30-32 feet	Soil Standard for a Single
Depth Parameter	(mg/kg)	(mg/kg)	(mg/kg)	Chemical (mg/kg)
	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)
Benzene	< 0.0032	< 0.0024	< 0.0024	26
Carbon Tetrachloride	< 0.0032	< 0.0024	<0.0024	15
Monochlorobenzene	< 0.0032	< 0.0024	< 0.0024	700
1,2-Dichlorobenzene	< 0.0032	< 0.0024	< 0.0024	380
1,4-Dichlorobenzene	< 0.0032	< 0.0024	< 0.0024	61
1,2-Dichloroethane	< 0.0032	< 0.0024	< 0.0024	11
1,1-Dichloroethene	< 0.0032	< 0.0024	< 0.0024	83
cis-1,2-Dichloroethene	< 0.0032	< 0.0024	< 0.0024	None
trans-1,2-Dichloroethane	< 0.0032	< 0.0024	< 0.0024	370
Dichloromethane	< 0.0032	< 0.0024	< 0.0024	750
1,2-Dichloropropane	< 0.0032	< 0.0024	< 0.0024	23
Ethylbenzene	< 0.0032	< 0.0024	<0.0024	130
Styrene	< 0.0032	< 0.0024	<0.0024	870
Tetrachloroethene	< 0.0032	< 0.0024	<0.0024	170
Toluene	< 0.0032	< 0.0024	< 0.0024	820
1,2,4-Trichlorobenzene	< 0.0032	< 0.0024	< 0.0024	150
1,1,1-Trichloroethane	< 0.0032	< 0.0024	< 0.0024	640
1,1,2-Trichloroethane	< 0.0032	< 0.0024	< 0.0024	26
Trichloroethene	< 0.0032	< 0.0024	< 0.0024	11
Vinyl Chloride	< 0.0032	< 0.0024	< 0.0024	1.3
Xylenes, total	< 0.0063	<0.0049	< 0.0049	260

Table 10. Analytical results for synthetic organic compounds in soils compared to VAP generic direct contact soil values for residential exposure.

SAMPLE NUMBER	MW-9S	MW-9D	MW-9D	Residential Generic Numerical	
	FILL	FILL	NATURAL	Direct Contact Soil Standard for	
Depth	10-12 feet	6-7 feet	30-32 feet	a Single Chemical	
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Alachlor (LASSO)-2051	<79	<76	<72 F1 F2	None	
Atrazine-2650	<79	<76	<72 F2	None	
Simazine-2037	<79	<76	<72 F1 F2	None	
F1=MS and/or MSD Recovery exceeds the control limts					
F2=MS/MSD RPD exceeds control limits					

2.1.3 Soils Results Summary

Soil analytical results show that residential generic numerical direct-contact soil standards for a single chemical as listed in Appendix A of OAC 3745-300-08, Table 1 were exceeded for four metals (arsenic, chromium, lead, and mercury) and six constituents SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene) in at least one interval in at least one boring during the 2014 investigation. Similarly, arsenic concentrations in the fill materials in the two 2015 monitoring well borings exceeded the residential generic numerical direct-contact soil standards for a single chemical as listed in Appendix A of OAC 3745-300-08, Table 1. Therefore, the Lancaster Interim Policy requires that a property specific risk assessment be performed. In fact, Bennett & Williams (2014a) included a property specific risk assessment. The results of this risk assessment are presented in Section 3.

2.2 Water Results

Groundwater was sampled from two temporary monitoring wells installed at the bottom of the fill during the 2014 Limited Phase II Environmental Assessment and analytical results were presented in Bennett & Williams (2014a). Although two permanent monitoring wells (MW-9S and MW-9D) were installed deeper in the aquifer materials underlying the fill by Fairfield County to be used as part of the monitoring network for the City of Lancaster in their Source Water Protection program (Bennett & Williams, 2015a), the monitoring wells were sampled by the City on April 15, 2015 and results are not available at the time of preparation of this report. The locations where samples were collected are shown in Figure 2.

2.2.1 Water Analyzed During the 2014 Limited Phase II Environmental Assessment

Groundwater samples were collected in two temporary monitoring wells installed in the only zones within the fill where sufficient saturation for the installation of a groundwater monitoring well was encountered. Each monitoring well was sampled for: the "target analyte list" of metals using EPA analytical Methods 6010B/7470B and the "target compound list" of VOCs using EPA Method 8260B.

Due to the fact that the initial environmental sampling was conducted in March 2014, prior to the adoption of the Lancaster Interim Policy, analyses of soil and water included many additional parameters not required in Table 1, but did not include all of the required analytes. Fairfield County flagged these parameters in the January 20, 2015 submittal to the City of Lancaster and indicated that groundwater samples were not sampled for cyanide, Alachlor, Atrazine and Simazine. Fairfield County explained that the reason that Alachlor, Atrazine, and Simazine had not been tested was because these compounds are all pesticides used for agricultural purposes. The reason no pesticides were analyzed is because the historical site information indicated that the property had been filled prior to World War II and no farming activities had taken place on the site in the ensuing years. Prior to World War II, pesticides were not manufactured. Similarly, the monitoring wells installed by the City of Lancaster on the site

Figure 2. Water sampling locations.

Ν W Ś

(4-S and 4-D) as part of the source water protection program were sampled for cyanide, but all values were shown to be non-detect from 1995 through 2009 when sampling ended.

The City of Lancaster considered the information provided on January 20, 2015 and concluded in the March 3, 2015 comments on the submission that "The groundwater samples were not analyzed for cyanide, Alachlor, Atrazine, and Simazine, and therefore were not analyzed in accordance with the required parameters indicated on Table 1 of the policy. However, the analytical list used during the Limited Phase II ESA was comprehensive and reasonable based on the information available during the field investigation. Cyanide was not identified as a chemical of concern (COC) and Alachlor, Atrazine, and Simazine are pesticides generally associated with agriculture and rural runoff. No further action is required".

Analytical results are presented and discussed in the following sections.

2.2.1.1 Target Analyte List Metals

Samples were collected from two monitoring wells for the 23 metals in the "target analyte list. The samples were analyzed by Methods 6010B and/or 7471A. Table 11 shows the analytical results as well as the VAP generic unrestricted potable use standards based on maximum contaminant levels from Appendix A of OAC 3745-300-08, Table VI. The laboratory results are included in Bennett & Williams (2014a). The results show that one of the analytes, arsenic, was detected above the VAP generic unrestricted potable use standards based on maximum contaminant levels from Appendix A of OAC 3745-300-08, Table VI.

Although the concentration of arsenic (0.043 mg/L) in one of the temporary monitoring wells does exceed the VAP generic unrestricted potable use standards, and hence the primary drinking water standard (0.010 mg/L), concentrations of arsenic in pumping well 28 in the Miller Park Wellfield that is part of the Ohio EPA ambient state-wide monitoring network also shows exceedances of the generic unrestricted potable use standards (and the MCL). (For reference, well 28 is located upgradient from the site, almost to Sixth Avenue and is one of the pumping wells that is the furthest away from the proposed new Public Safety Facility/Sheriff's Office.) Ohio EPA (2013a) (Appendix A) shows that, from the 21 samples collected between March 5, 1992 and November 3, 2011, the minimum concentration of arsenic was 0.0088 mg/L and the maximum was 0.018 mg/L. Statistically, the mean concentration was 0.0114 mg/L and the median was 0.012 mg/L. Both the mean and the median are above the generic unrestricted potable use standards and the MCL. Figure 3 presents the time series plot for arsenic and shows the concentrations through time for pumping well 28 in the Miller Park Wellfield (Ohio EPA, 2013b) (Appendix B).

BW1 BW4 WELL NUMBER Laboratory Method Primary Secondary VAP generic unrestricted Drinking Water Drinking Water Sample Date 03/31/2014 03/31/2014 Reporting Detection potable use standards based on maximum Water Water Limit Limit Standard Standard contaminant levels Parameter mg/L mg/L mg/L mg/L mg/L mg/L 0.05-0.2 < 0.2 < 0.2 02 0.097 Aluminum None < 0.010Antimonv < 0.0100.010 0.0021 0.006 0.006 Arsenic 0.0078 J 0.043 0.010 0.0032 0.010 0.010 Barium 0.4 B 0.21 B 0.2 0.00067 2.0 None Beryllium 0.00046 0.004 < 0.005< 0.005 0.005 0.004 Cadmium 0.005 < 0.002< 0.002 0.002 0.00066 0.005 160 B Calcium 290 B 5 0.13 None 0.0033 J < 0.005 0.005 0.0022 0.1 Chromium 0.1 Cobalt < 0.007 0.0037 J 0.007 0.0017 None < 0.025 < 0.025 0.0045 13 0.025 13 1 Copper 15 5.1 0.081 0.3 0.1 None Iron 0.0027 J < 0.003 0.015 0.0019 0.015 0.015 Lead 0.034 Magnesium 45 23 5 None Manganese 1.1 0.015 0.00096 0.05 None 0.0012 Mercury < 0.002 < 0.002 0 0004 0.002 0.002 Nickel 0.0049 J 0.0094 J 0.0032 None 0.04 17 8.7 0.072 Potassium 5 None Selenium < 5.0 4 9 J 0.0041 0.050 0.005 0.05 Silver 0.1 < 0.005< 0.005 0.005 0.0022 None 62 Sodium 360 5 0.59 None < 0.01Thallium < 0.010.01 0.0047 0.002 0.002 Vanadium < 0.007< 0.0070.007 0.0024 None 0.024 Zinc 0.047 JB 0.13 B 0.25 5 None J = Result is less than the Reporting Limit, but greater than or equal to the Maximum Detection Limit and the concentration is an approximate B=Compound was found in the blank and sample

Table 11. Analytical results for dissolved metals in groundwater in the fill compared to VAP generic unrestricted potable use standards based on maximum contaminant levels (OAC 3745-300-08 Appendix A, Table VI).

Exceeds generic unrestricted potable use standars based on maximum contaminant levels (OAC 3745-300-08 in Appendix A, Table VI.

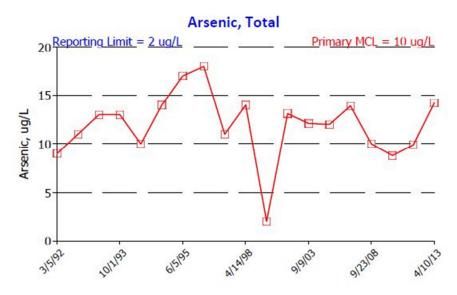


Figure 3. Time series of concentrations of arsenic in production well 28 in the Miller Park Wellfield, March 5, 1992 through April 10, 20013 (Ohio EPA, 2013b).

Data for pumping well 28 in the Miller Park Wellfield show that arsenic concentrations are mostly above the primary drinking water standard. Because concentrations of arsenic are also present in the wellfield above the generic unrestricted potable use standards, no site specific risk assessment was performed for arsenic.

In addition to arsenic, Table 11 shows that both the reporting limit (0.01 mg/L) and the maximum detection limit (0.0047 mg/L) for thallium are higher than the maximum contaminant level (MCL) and the VAP standard (0.002 mg/L).

With regard to thallium, according to US EPA (2014a), "Thallium is a metal found in natural deposits such as ores containing other elements. The greatest use of thallium is in specialized electronic research equipment. The major sources of thallium in drinking water are leaching from ore-processing sites; and discharge from electronics, glass, and drug factories". ATSDR (2013) summarizes information about thallium by stating "Exposure to thallium occurs mainly from eating food. Exposure to higher levels of thallium may occur in the workplace. Breathing high levels of thallium may result in effects on the nervous system, while ingesting high levels of it results in vomiting, diarrhea, temporary hair loss, and other effects."

A review of the available water quality information for the two monitoring wells that the City of Lancaster installed on the Fairfield County property in October 1995 (MW-4S and MW-4D) shows that thallium was not detected in 31 samples collected from October 17, 1995 through July 8, 2009. According to the City of Lancaster, no additional samples were collected from July 8, 1999 through March 2015. The well logs show that these wells were drilled through five feet of *"subase* (sic) *and foundry sand"*, which are the fill materials that were found to be present on the rest of the 44 borings on the site. Appendix C contains a location map, logs for monitoring wells MW-4S and MW-4D as well as the analytical results provided by the City of Lancaster. Based on this information, thallium is not a chemical of concern at the site.

2.2.1.2 Target Compound List Volatile Organic Compounds

Samples were collected from the two temporary monitoring wells within the fill and analyzed for the 48 VOCs in the "target compound list". Samples were analyzed by Method 8260B. Table 12 shows the analytical results, the temporary monitoring wells from which the samples were collected, and the date the sample was collected. The laboratory results are in Bennett & Williams (2014a). The results for VOCs in the samples (Table 12) show that no VOCs were detected above the reporting limit in the water samples from the site.

However, with regard to1,2-Dibromo-3-Chloropropane (DBCP), although DBCP was not detected, both the reporting limit (1.0 ug/L) and the maximum detection limit (0.67 ug/L) were above the VAP generic unrestricted potable use standard (0.2 ug/L). According to US EPA (2014b), DBCP *"is used primarily as an unclassified nematocide for soil fumigation of cucumbers, summer squash, cabbage, cauliflower, carrots, snap beans, okra, aster, shasta daisy, lawn grasses and ornamental shrubs."* Further, *"The major source of 1,2-dibromo-3-chloropropane in drinking water is runoff/leaching from soil fumigant used on soybeans, cotton, pineapples and orchards"* (US EPA, 2014b). Based on the listed sources and the known historical uses of the property, no sources of DCBP are anticipated at the site. Further, although the tables provided to us by the City of Lancaster indicate that VOCs were analyzed by Method 8260B, the only VOC ever reported was carbon disulfide in 1996. During this time period, a frequent source of carbon disulfide in samples was shown to be the powder used in gloves worn to collect samples. Finally, Table 1 of the Lancaster Interim Policy on Development within the Wellhead Protection Zones does not require testing for this parameter.

Therefore, no VAP generic unrestricted potable use standards were exceeded.

2.2.2 Water Results Summary

Water analytical results show that generic unrestricted potable use standards as listed in Appendix A of OAC 3745-300-08, Table VI were exceeded only for one metal (arsenic) in one sample from water within the fill in 2014. Further examination of analytical results for arsenic from pumping well 28 (just south of Sixth Avenue and likely significantly upgradient of the Fairfield County property) in the Miller Park Wellfield showed that concentrations of arsenic in the pumping well also exceed the generic unrestricted potable use standards as listed in Appendix A of OAC 3745-300-08, Table VI. In fact, the time series plots prepared by Ohio EPA (2013b) show that the concentrations in pumping well 28 are consistently greater than the MCL. Therefore, although the Lancaster Interim Policy technically requires that a property specific risk assessment be performed, none is warranted in this situation.

Table 12. Analytical results for VOCs detected in groundwater in the fill compared to VAP generic unrestricted potable use standards based on maximum contaminant levels (OAC 3745-300-08 Appendix A, Table VI).

WELL NUMBER	BW1	BW4	TRIP BLANK	Laboratory	Method	VAP generic unrestricted
Sample Date	3/31/2014	3/31/2014	3/31/2014	Reporting	Detection	potable use standards
-						based on maximum
	Water	Water	Water	Limit	Limit	contaminant levels
PARAMETER	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	1.0	0.22	200
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	1.0	0.18	None
1,1,2-Trichloro-1,2,2-trifluoroethane	<1.0	<1.0	<1.0	1.0	0.28	None
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	1.0	0.27	5
1,1-Dichloroethane	<1.0	<1.0	<1.0	1.0	0.15	None
1,1-Dichloroethene	<1.0	<1.0	<1.0	1.0	0.19	7
1,2,4-Trichlorobenzene	<1.0	<1.0	<1.0	1.0	0.15	70
1,2-Dibromo-3-Chloropropane	<2.0	<2.0	<2.0	1.0	0.67	0.2
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	1.0	0.13	600
1,2-Dichloroethane	<1.0	<1.0	<1.0	1.0	0.22	5
1,2-Dichloropropane	<1.0	<1.0	<1.0	1.0	0.18	5
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	1.0	0.14	None
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	1.0	0.13	75
2-Butanone (MEK)	<10	0.61 J	<10	10.0	0.57	None
2-Hexanone	<10	<10	<10	10.0	0.41	None
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	10.0	0.32	None
Acetone	3.0 J B	4.0 J B	<10	10.0	1.10	None
Benzene	<1.0	<1.0	<1.0	1.0	0.13	5
Bromoform	<1.0	<1.0	<1.0	1.0	0.64	80
Bromomethane	<1.0	<1.0	<1.0	1.0	0.41	None
Carbon disulfide	0.69 J	<1.0	<1.0	1.0	0.13	None
Carbon tetrachloride	<1.0	<1.0	<1.0	1.0	0.13	5
Chlorobenzene	<1.0	<1.0	<1.0	1.0	0.15	100
Chlorodibromomethane	<1.0	<1.0	<1.0	1.0	0.19	None
Chloroethane	<1.0	<1.0	<1.0	1.0	0.29	None
Chloroform	<1.0	<1.0	<1.0	1.0	0.16	80
Chloromethane	<1.0	<1.0	<1.0	1.0	0.30	None
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	1.0	0.17	None
cis-1,3-Dichloropropene	<1.0	<1.0	<1.0	1.0	0.17	None
Cyclohexane	<1.0	<1.0	<1.0	1.0	0.14	None
Dichlorobromomethane	<1.0	<1.0	<1.0	1.0	0.12	80
Dichlorodifluoromethane	<1.0	<1.0	<1.0	1.0	0.31	None
Ethylbenzene	<1.0	<1.0	<1.0	1.0	0.17	700
Ethylene Dibromide	<1.0	<1.0	<1.0	1.0	0.17	None
Isopropylbenzene	<1.0	<1.0	<1.0	1.0	0.13	None
Methyl acetate	<10	<1.0	<1.0	10.0	0.38	None
Methyl tert-butyl ether	<1.0	<1.0	<1.0	1.0	0.17	None
Methylcyclohexane	<1.0	<1.0	<1.0	1.0	0.17	None
Methylene Chloride (Dichloromethane)	<1.0	<1.0	0.41 J B	1.0	0.13	5
Styrene	<1.0	<1.0	<1.0	1.0	0.33	100
Tetrachloroethene	<1.0	<1.0	<1.0	1.0	0.11	5
	<1.0	<1.0	<1.0	1.0	0.29	1000
Toluene trans-1,2-Dichloroethene	<1.0		<1.0		0.13	None
	<1.0	<1.0 <1.0	<1.0	1.0	0.19	
trans-1,3-Dichloropropene						None
Trichloroethene	<1.0	<1.0	<1.0	1.0	0.17	5 Norra
Trichlorofluoromethane	<1.0	<1.0	<1.0	1.0	0.21	None
Vinyl chloride	<1.0	<1.0	<1.0	1.0	0.22	2
Xylenes, Total	<2.0	<2.0	<2.0	2.0	0.14	10000
J = Result is less than the Reporting Lim		nan or equal to t	ne Maximum De	election Limit a	na the concentr	auon is an approximate
B=Compound was found in the blank an	d sample					

2.3 Summary of Need for Property Specific Risk Assessment

Based on the soil analytical results collected in the fill in 2014, generic numerical directcontact soil standards for a single chemical as listed in Appendix A of OAC 3745-300-08, Table 1 were exceeded for four metals (arsenic, chromium, lead, and mercury) and six constituents SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene) in at least one interval in at least one boring. Similarly, arsenic concentrations in the fill materials in the two 2015 monitoring well borings exceeded the generic numerical direct-contact soil standards for a single chemical as listed in Appendix A of OAC 3745-300-08, Table 1. Therefore, the Lancaster Interim Policy requires that a property specific risk assessment be performed based on the soil concentrations. Results from the risk assessment performed prior to the adoption of the Lancaster Interim Policy are presented in Section 3.

Water analytical results show that generic unrestricted potable use standards as listed in Appendix A of OAC 3745-300-08, Table VI were exceeded only for one metal (arsenic) in one sample from water within the fill in 2014. However, pumping well 28 in the Miller Park wellfield consistently showed concentrations of arsenic above the VAP generic unrestricted potable use standards and the MCL. Most significantly, pumping well 28 is just south of Sixth Avenue (the furthest pumping well from the Fairfield County site) and likely upgradient in most pumping scenarios. Therefore, although the Lancaster Interim Policy technically requires that a property specific risk assessment be performed, none is warranted in this situation. Also, the City of Lancaster did not request such an evaluation. Alternately, the City of Lancaster in their March 3, 2015 comments on the Fairfield County submittal requested that *"the potential risks associated with* [the] *soil leaching to groundwater pathway"* be evaluated. The results of this analysis are summarized in Section 4 and included in Bennett & Williams (2015b).

SECTION 3 RISK ASSESSMENT FOR DERMAL AND INHALATION PATHWAYS

3.1 Introduction

As discussed in Section 2, analytical results collected from the fill materials showed that numerical direct-contact soil standards for a single chemical as listed in Appendix A of OAC 3745-300-08, Table 1 were exceeded for four metals (arsenic, chromium, lead, and mercury) and six constituents SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz(a,h)anthracene, and indeno[1,2,3-cd]pyrene) in at least one interval in at least one boring during the 2014 investigation (Bennett & Williams, 2014a) and for arsenic in the 2015 installation of monitoring wells MW-9S and MW-9D (Bennett & Williams, 2015a). Therefore, the Lancaster Interim Policy requires that a property specific risk assessment be performed based on the soil concentrations.

As discussed in earlier sections, a property specific risk assessment was performed and results presented in the July 7, 2014 Bennett & Williams report as part of a Limited Phase II Environmental Property Assessment for areas under the proposed footprint of the new Public Safety Facility/Sheriff's Office. Subsequent evaluation of risk posed by soil gas and/or vapor intrusion was performed and presented in Bennett & Williams (2014b and 2015c). The Lancaster Interim Policy for Development within the Wellhead Protection Zones was not adopted until December 15, 2014. A summary of the results of these previous risk assessments is presented herein.

3.2 Site Orientation

The site of the proposed Fairfield County Jail/Public Safety Facility is located in an urban area, in downtown Lancaster, Ohio. Currently, the Fairfield County Sheriff's Office and MSMJ is adjacent to the proposed footprint of the new facility. Previously, the site had been filled using primarily foundry sand. The proposed future land use is for the Fairfield County Jail/Public Safety Facility. The site is supplied by both sanitary sewers and municipal water.

3.3 Exposure Routes

Given the current and future land use envisioned at the site, the populations with the potential to be impacted are current and future adult residents of the prison, current and future adults working at the jail and onsite workers involved in future excavation and construction. The current and proposed prison facilities do not have capacity for juvenile offenders and any child visitors can be expected to be onsite only for short periods of time while visiting adult offenders.

Possible exposure routes for onsite excavation and construction workers include: ingestion, inhalation and dermal contact. Ingestion of chemicals of concern is not a significant concern because water at the site is not used as a drinking water source and the site is supplied by municipal water. However, during excavation and construction, on-site workers may be exposed to chemicals of concern through dermal contact and inhalation of outdoor air (Table 13).

Land Use	Potentially Exposed Population	Exposure Route, Media and Exposure Point					
	Future						
Construction and Excavation	On-site Workers	Dermal contact with chemicals of concern in soil during excavation and construction					
Construction and Excavation	On-site Workers	Inhalation of chemicals of concern during excavation and construction					
Future and Current							
Industrial	On-site Workers	Inhalation of chemicals of concern in indoor air					
Residential	On-site Adult Residents	Inhalation of chemicals of concern in indoor air					

Table 13. Exposure pathways for risk assessment.

3.4 Chemicals of Concern

The following metals were detected above the reporting limit: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium and zinc. Calcium, magnesium, iron, potassium and sodium were omitted as chemicals of concern due to a lack of information on possible negative health effects caused by these metals. Cobalt, copper, nickel and silver were omitted due to the extremely limited toxicological data available for these metals. Thallium was not included as a chemical of concern because it was only detected above the reporting limit in one sample from boring BW-4. Lead was evaluated separately from the other chemicals of concern (COC), as recommended by USEPA (2014c). Therefore, the metals evaluated during the quantitative risk assessment were: aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, manganese, mercury, selenium, vanadium and zinc. Arsenic, chromium, lead and mercury were reported at concentrations higher than the VAP residential generic numerical direct contact soil values (Table 2). Therefore, a property specific risk assessment was performed on all constituents that exceeded the generic numerical direct contact soil standards for residential land use as listed in OAC 3745-300-08 in Appendix A, Table I. In addition, eight other inorganic parameters were also evaluated.

No VOCs were detected in any sample above the laboratory reporting limits. Therefore, no VOCs were examined during this risk assessment (Table 4). Several SVOCs were reported above the laboratory detection limits: 2-methyl naphthalene, acenaphthene, acenaphthylene,

anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, dibenzofuran, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene and pyrene. Dibenzofuran was omitted from the risk assessment because it was only detected above the reporting limit in one sample from boring BW-7 (and did not exceed the generic numerical direct contact soil standards for residential land use as listed in OAC 3745-300-08 in Appendix A, Table I). The remaining detected SVOCs were designated as COCs in the risk assessment. Benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthacene and indeno[1,2,3-cd]pyrene were reported at concentrations higher than the VAP residential generic numerical direct contact soil values (Table 6).

3.5 Results of the Initial Risk Assessment based on Soil Data

3.5.1 Initial Evaluation of Potential Risks to Construction/Excavation Workers

3.5.1.1 Arsenic and Mercury

A risk assessment was performed on twelve metals and described in Bennett & Williams (2014a). However, only two metals (arsenic and mercury) pose potential exposure issues to construction/excavation workers.

As discussed in Bennett & Williams (2014a), based on the concentrations of COCs in the soil, construction/excavation workers are expected to have an increased dermal risk due to arsenic if they are onsite fulltime more than 90 days. This risk can be managed by requiring workers (as part of a health and safety plan) to wear gloves and long sleeves. Workers should also be reminded that showering after work will further reduce their exposure risk. Recommendations were made to Fairfield County to include this information in bid specifications to protect workers if they were to be onsite longer than 90 days fulltime.

In addition, construction/excavation workers are expected to have an unacceptable increased inhalation risk due to mercury if they are onsite fulltime more than 200 days. This risk can be managed (as part of a health and safety plan) by limiting either the number of hours and/or the number of days of exposure for the worker. Recommendations were made to Fairfield County to include this information in bid specifications to protect workers if they were to be onsite longer than 200 days fulltime.

<u>3.5.1.2 Lead</u>

As mentioned in Section 3.4, lead was evaluated separately from the other chemicals of concern (COCs), as recommended by USEPA (2014c). The USEPA's recommended model for evaluating blood lead concentrations in non-residential adult exposure scenarios is the Adult Lead Methodology (ALM). The ALM model is a tool to estimate the concentration of lead in the blood of non-residential adults exposed to lead in the environment. The methodology relates lead uptake at a site to the concentration of lead in the top layers of soil (i.e., exposure to dusts) and predicts the concentration of lead in the blood of pregnant women and a developing fetus. However, this methodology is also considered to be protective of adult male workers at the site.

The ALM calculated a geometric mean blood lead concentration of 11.6 μ g/dl. This result is higher than the target blood lead concentration level of 10 μ g/dl. When this situation occurs, construction worker exposure is subject to 29CFR 1926.62 (Section 5.10.3).

These OSHA regulations require that employers with workers who will be occupationally exposed to lead must determine whether an employee is exposed to levels of lead above the action level of $30 \ \mu g/m^3$. The initial determination must be made using onsite air monitoring as if the employee is not wearing a respirator. If initial monitoring shows that the action is not exceeded, then no further air monitoring is necessary. Fairfield County performed initial air monitoring for lead. The results are discussed in Section 3.8.

3.5.2 Initial Evaluation of Potential Risks to Current and Future Adult Residents at the Fairfield County Jail/Sheriff's Office

Possible exposure routes for current and future adult residents at the proposed Fairfield County Jail/Public Safety Facility include: ingestion, inhalation and dermal contact. Ingestion of chemicals of concern is not a significant concern because water at the site is not used as a drinking water source and the site is supplied by municipal water. The dermal exposure route for residents will not be a complete pathway because the plans for the proposed jail call for covering the soil with asphalt and there is currently no exposed soil. However, residents may be exposed to chemicals of concern through inhalation of indoor air (Table 13).

Concentrations of COCs in indoor air in the proposed jail and proposed jail and possible expansion were estimated for future adult resident using the Johnson and Ettinger (1991) model (Environmental Quality Management, 2004). Results of the risk assessment were based on solely on concentrations of constituents in the soil (as opposed to soil gas). Results showed that a hazard quotient as high as 3.66 was calculated for mercury for adult residents in the future jail (Table 14). This hazard quotient exceeded 0.1 (the hazard quotient recommended by Ohio EPA when hazard quotients are calculated from bulk soil analyses). This lower hazard quotient threshold (0.1 as opposed to the usual threshold of one) is used to account for the increased uncertainty associated with a risk assessment based on the analysis of bulk soil. Ohio EPA (2010) recommends further data collection (including soil gas sampling and analysis) prior to a definitive determination of risk. Therefore, soil gas data was collected and risk analyzed using soil gas data. These results are discussed further in Sections 3.6 and 3.7.

3.5.3 Initial Evaluation of Potential Risks to Current and Future Adult Workers at the Fairfield County Jail/Sheriff's Office

Possible exposure routes for current and future adult workers at the proposed Fairfield County Jail/Public Safety Facility include: ingestion, inhalation and dermal contact. Ingestion of chemicals of concern is not a significant concern because water at the site is not used as a drinking water source and the site is supplied by municipal water. The dermal exposure route for workers will not be a complete pathway because the plans for the proposed jail call for covering the soil with asphalt and there is currently no exposed soil. However, workers may be exposed to chemicals of concern through inhalation of indoor air (Table 13). Table 14. Initial results from the Johnson and Ettinger model showing vapor intrusion to indoor air hazard quotients.

		Incremental risk	Hazard quotient
		from vapor intrusion	from vapor intrusion
		to indoor air	to indoor air (non-
Parameter	Scenario	(carcinogen)	carcinogenic)
Acenaphthene	Residential proposed jail		9.48E-05
1	Residential proposed jail and		7.97E-05
	Worker proposed jail		6.49E-05
	Worker proposed jail and expansion		5.46E-05
	Worker proposed Sheriff's office		1.69E-04
Benzo[b]fluoranthene	Residential proposed jail	3.15E-11	
	Residential proposed jail and	2.65E-11	
	Worker proposed jail	5.40E-10	
	Worker proposed jail and expansion	4.54E-10	
	Worker proposed Sheriff's office	1.41E-09	
Chrysene	Residential proposed jail	1.25E-12	
j~	Residential proposed jail and	1.05E-12	
	Worker proposed jail	2.13E-11	
	Worker proposed jail and expansion	1.80E-11	
	Worker proposed Sheriff's office	5.57E-11	
Fluorene	Residential proposed jail		1.05E-04
	Residential proposed jail and		8.84E-05
	Worker proposed jail		7.20E-05
	Worker proposed jail and expansion		6.05E-05
	Worker proposed Sheriff's office		1.88E-04
Mercury	Residential proposed jail		3.66
	Residential proposed jail and		3.08
	Worker proposed jail		2.51
	Worker proposed jail and expansion		2.11
	Worker proposed Sheriff's office		6.53
2-Methylnaphthalene	Residential proposed jail		4.72E-05
	Residential proposed jail and		3.97E-05
	Worker proposed jail		3.23E-05
	Worker proposed jail and expansion		2.72E-05
	Worker proposed Sheriff's office		8.43E-05
Naphthalene	Residential proposed jail		6.61E-02
	Residential proposed jail and		5.56E-02
	Worker proposed jail		4.53E-02
	Worker proposed jail and expansion		3.81E-02
	Worker proposed Sheriff's office		1.18E-01
Pyrene			1.39E-05
	Residential proposed jail and		1.19E-05
	Worker proposed jail		9.51E-06
	Worker proposed jail and expansion		7.99E-06
	Worker proposed Sheriff's office		2.48E-05

Concentrations of COCs in indoor air in the proposed jail, proposed jail and possible expansion, and proposed Sheriff's Office were estimated for adult workers using the Johnson and Ettinger (1991) model (Environmental Quality Management, 2004). Results of the risk assessment were based on solely on concentrations of constituents in the soil (as opposed to soil gas). Results showed that a hazard quotient as high as 6.53 was calculated for mercury for adult workers in the proposed Sheriff's office (Table 14). This hazard quotient exceeded 0.1 (the hazard quotient recommended by Ohio EPA when hazard quotients are calculated from bulk soil analyses). This lower hazard quotient threshold (0.1 as opposed to the usual threshold of one) is used to account for the increased uncertainty associated with a risk assessment based on the analysis of bulk soil.

Similarly, a hazard quotient for naphthalene was calculated to be 0.118 (Table 14). This hazard quotient exceeded 0.1 (the hazard quotient recommended by Ohio EPA when hazard quotients are calculated from bulk soil analyses). This lower hazard quotient threshold (0.1 as opposed to the usual threshold of one) is used to account for the increased uncertainty associated with a risk assessment based on the analysis of bulk soil. Ohio EPA (2010) recommends further data collection (including soil gas sampling and analysis) prior to a definitive determination of risk. Therefore, soil gas data was collected and risk analyzed using soil gas data. These results are discussed further in Sections 3.6 and 3.7.

3.6 Results of Risk Assessment for Jail Residents and Workers based on Soil Gas Data

As discussed in the October 2, 2014 report, "Vapor Intrusion Assessment; Proposed Fairfield County Jail/Public Safety Facility and Existing Sheriff's Office and MSMJ" (Bennett & Williams, 2014b), soil gas data for this analysis were collected on July 24 and 25, 2014 and September 4 and 5, 2014. Soil gas samples were collected from subsurface probes installed coincident with the locations where the mercury and naphthalene were found to be the highest in the soil samples under the proposed building footprint. In addition, a subsurface probe was installed coincident with BW-3 to provide spatial distribution under the proposed building footprint and to correspond to the initial risk assessment calculations. Shallow and deep probes were installed at BW-1 where the fill materials were deeper and concentrations of constituents in the soil were greater. Six soil gas samples were collected.

No mercury or naphthalene was recorded in any soil gas probes above the laboratory detection limits. When calculating hazard quotients from soil gas data, a hazard quotient greater than one (1) is considered to pose a potential risk to exposed populations. A risk assessment for future workers and residents at the proposed Fairfield County Jail/Public Safety Facility demonstrated no increased non-carcinogenic risks to either workers or residents at the proposed facility, indicated by hazard quotients between 9.8 x 10^{-6} and 1.1×10^{-4} .

3.7 Results of Risk Assessment for Jail Residents and Workers based on Indoor Air Data

As discussed in the January 2, 2015 report, "Supplement to Vapor Intrusion Assessment, Existing Sheriff's Office and MSMJ, 334 West Wheeling Street, Lancaster, Ohio" (Bennett & Williams, 2015c), sub-slab gas samples and collocated ambient air samples were collected on August 4 and 5, 2014 and November 4 and 5, 2014. The purpose of collecting indoor air samples was to measure concentrations of mercury and naphthalene in indoor air in the event that the sub-slab vapor samples showed concentrations of naphthalene and/or mercury. No detections of mercury or naphthalene were reported in the sub-slab air samples and there is no increased risk due to either mercury or naphthalene for residents or workers due to vapor intrusion through the sub-slab into the existing building. However, in order to be thorough, a risk assessment was conducted using the data collected during the sampling of ambient air.

Concentrations of mercury and naphthalene in indoor air were measured at five locations inside the current Sheriff's Office and MSMJ. After the first ambient air sampling in August 2014, when all samples returned non-detect values, it was decided to increase the volume of sample collected to further reduce the reporting limit. There were no detections of mercury or naphthalene in the ambient air, even at the reduced reporting limits used in November 2014. Because all samples were reported to be non-detect values, half the November 2014 reporting limits were used as the default "concentration" in the ambient air for the purposes of the risk assessment as recommended by USEPA (1991).

No excess health risk is posed to workers in the existing Sheriff's Office and MSMJ by mercury or naphthalene in the ambient air (hazard quotients of 0.10 and 0.14, respectively). This confirms the analysis of sub-slab mercury and naphthalene concentrations that also demonstrated no health risk to workers in the Sheriff's Office and MSMJ. Similarly, mercury and naphthalene do not pose a substantial risk to residents in the MSMJ (hazard quotients of 0.45 and 0.60, respectively).

3.8 Air Sampling for Lead

As discussed in the November 10, 2014 report, "*Initial Air Sampling for Lead at the Proposed Fairfield County Jail/Public Safety Facility and Existing Sheriff's Office and MSMJ*, *334 West Wheeling Street, Lancaster, Ohio*" (Bennett & Williams, 2014c), initial sampling for lead in the air was conducted in accordance with 29CFR 1926.62 (Section 5.10.3) on October 27, 2014. Two samples were collected by monitoring air with personal monitors while excavating and manipulating fill materials in the area under the footprint of the proposed Fairfield County Jail/Public Safety Facility where the highest concentrations of lead were indicated. OSHA Method ID 125G was used to analyze the samples.

No lead was recorded in the samples above the laboratory detection limits of 0.324 μ g/m³. Also, the OSHA air action level for lead of 30 μ g/m³ was not exceeded. Therefore, because the initial monitoring did not exceed the OSHA air action level for lead, no further air monitoring during excavation and construction activities needs to be performed and no air program must be established.

3.9 Summary of Risks Posed by Soil and Air Exposure

In 2014, Bennett & Williams performed three separate data collection efforts and subsequent risk assessments to evaluate complete risk pathways at the site (Bennett & Williams 2014a, 2014b, 2014c, 2015c). The risk assessments were based on concentrations of chemicals of concern in soil, soil gas, subslab vapor, indoor air and outdoor air.

Although initial risk assessments performed using concentrations of contaminants of concern in the soil indicated that there may be a risk to future jail residents and/or jail workers from vapor intrusion into the new building by mercury and/or naphthalene, data collection of soil gas, subslab vapor and indoor air (in the current building) showed that no risk exists. Similarly, although initial risk assessments performed using concentrations of contaminants of concern in the soil indicated that there may be a risk to construction/excavation workers posed by lead, subsequent investigation and data collection under requirements by OSHA indicated that no air monitoring is necessary.

The risk assessment showed that the only risks posed by fill materials at the site were to construction/excavation workers. These risks were posed by dermal exposure to arsenic and an inhalation risk for mercury. The risk from arsenic can be managed by limiting construction/excavation workers to no more than 90 fulltime days onsite or by requiring workers (as part of a health and safety plan) to wear gloves and long sleeves. Workers should also be reminded that showering after work will further reduce their exposure risk. The risk from mercury can be managed (as part of a health and safety plan) by limiting either the number of hours and/or the number of days of exposure for the worker to no more than 200 fulltime days.

Fairfield County will require, as part of the bid documents, that contractors develop a health and safety plan to address these potential risks from arsenic and mercury.

SECTION 4 RISK ASSSESSMENT FOR INGESTION PATHWAY

4.1 Introduction

The initial risk assessments conducted in 2014 did not evaluate an onsite water ingestion pathway because the water at the site is not used as a drinking water source and the site is supplied by municipal water. However, samples of water were collected from the fill materials when water was encountered. Potential constituents in groundwater in the fill were deemed important because the City of Lancaster operates a public wellfield in Miller Park, immediately north of the site, on the north side of Wheeling Street.

As discussed in Section 2.2, the water was tested for target analyte list metals and target compound list volatile organic compounds (VOCs). Results showed that, with the exception of arsenic in one sample, the water within the fill materials met all primary drinking water standards (and hence all generic unrestricted potable use standards in Appendix A of OAC 3645-300-08, Table 1). However, concentrations of arsenic in pumping well 28 in the Miller Park Wellfield that is part of the Ohio EPA ambient state-wide monitoring network also shows exceedances of the generic unrestricted potable use standards (and the MCL). Further, both the mean and the median concentrations of arsenic in the pumping well are above the generic unrestricted potable use standards (and the MCL). Further, both the mean and the median concentrations of arsenic in the pumping well are above the generic unrestricted potable use standards (and the MCL). Further, both the mean and the median concentrations of arsenic in the pumping well are above the generic unrestricted potable use standards the MCL. (For reference, well 28 is located upgradient from the site, almost to Sixth Avenue and is one of the pumping wells that is the furthest away from the proposed new Public Safety Facility/Sheriff's Office.) Ohio EPA (2013a).

Despite these results, the City of Lancaster, in the March 3, 2014 comments relating to the January 20, 2015 submittal by Fairfield County in response to the December 15, 2014 Lancaster Interim Policy on Development within the Wellhead Protection Zones requested that another risk analysis be performed. Specifically, the City stated "*The Limited Phase II ESA indicates that soil concentrations of antimony, arsenic, chromium, lead, mercury, selenium, and thallium exceed Ohio EPA generic leach-based soil values. Please evaluate the potential risks associated with soil leaching to groundwater pathway. The provide* [sic] *Risk Analysis indicates that the on-site groundwater pathway is not complete because the site is served by City of Lancaster water. However, the off-site receptor pathway has not been considered which is important because the City's Miller Park wellfield is located on the adjacent property to the north, the site lies within the 1-year Wellhead Protection Zone, and groundwater flow under the site is presumably towards the Miller Park wellfield. Please evaluate the risks associated with the off-site groundwater receptor pathway, being toward the City of Lancaster Miller Park wellfield.*"

4.2 Risk Assessment of Soil Leaching to Groundwater Pathway

The City of Lancaster specifically requested that seven constituents (antimony, arsenic, chromium, lead, mercury, selenium, and thallium) that exceeded Ohio EPA generic leach-based soil values during the 2014 environmental investigation be further evaluated. Table 15 shows the location, depth, and date of sample collection as well as the generic leach-based soil values for inorganic chemicals where the source is $\geq \frac{1}{2}$ acre (Ohio EPA, 2008).

To make sure that the leaching potential was fully evaluated, the detected volatile organic chemicals as well as the semi-volatile organic chemicals were compared to leach-based standards for Soil Type I (Ohio EPA, 2008). According to Ohio EPA (2008), soil Type I "*may also include fill material*..." Table 16 shows that no volatile organic compounds exceeded the leach-based standards. However, Table 17 shows that one semi-volatile compound, naphthalene, exceeded the leach-based values for Type I soils. Therefore, even though the City did not request the evaluation of naphthalene, this compound was evaluated for completeness.

As discussed in the April 28, 2015 report, "Evaluation of the Soil Leaching to Groundwater Pathway for Selected Metals for the Offsite Receptor of the Miller Park Wellfield, Lancaster, Ohio" (Bennett & Williams, 2015b), the results of the leaching model showed that under both current conditions and proposed post-construction conditions, that none of the seven inorganic constituents leached to groundwater in 100 years. Similarly, the results of the leaching model also showed that naphthalene did not leach to groundwater in 100 years. These results were obtained despite the fact that the most conservative input parameters were used to reach these results. Therefore, based on the results of the leaching model, no risk to the Miller Park wellfield was found.

4.3 Summary of Risk to Water

SESOIL, a leaching model accepted by the Ohio EPA voluntary action program for evaluating leaching potential, was used to calculated the distance moved by each of the eight constituents that exceeded the Ohio generic leach-based soil values. The model results showed that none of the constituents leached to groundwater within 100 years. Therefore, no risk mitigation is required.

Table 15. Analytical r	esults for in	organic cher	nicals in soil	s for which (Ohio EPA ha	as generic le	ach-based s	soil values (0	DEPA, 2008).	

BORING NUMBER	BW1	BW1	BW2	BW3	BW3	BW4	BW4	BW5	BW5	BW6	BW6	BW7	BW7	BW8	BW8	BW9	BW10	based
Depth	4-6 Ft	10-12 Ft	2-4 Ft	1.5-2 Ft	2-4 Ft	2-4 Ft	8-10 Ft	1-2 Ft	10-11 Ft	1-2 Ft	4-6 Ft	2-4 Ft	6-8 Ft	4-6 Ft	6-8 Ft	2-4 Ft	2-4 Ft	value for
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	sources ≥ 1/2 acre
																		mg/kg
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Antimony	43	11	14	1.3	0.74 J	0.78 J	<6.0	0.69 J	0.97 J	<1.0	0.51 J	0.39 J	0.41 J	5.9	1.2	0.58 J	<0.82	4
Arsenic	18	94	22	7	12	8.8	36	11	34	3.6	6.8	7.1	9.2	460	23	12	1.9	3
Barium	450	3300	500	27	68 B	61	920	32	220	22	27	57 B	44 B	170 B	160 B	120 B	11 J B	56,000
Beryllium	0.68	0.56 J	0.34 J	0.11 J	0.46 J	0.21 J	2	0.27 J	0.80 J	0.17 J	0.25 J	0.26 J	0.37 J	0.43 J	0.39 J	0.62	0.058 J	57
Cadmium	1.4	6.4	6.8	0.39	0.43	0.25	2.6	0.53	6.5	0.16 J	1.9	0.41	0.33	4.1	3.3	1.3	0.062 J	21
Chromium	37	330	81	35	16	34	60	19	120	8.9	19	26	22	23	20	15	8.6	56
Lead	1100	2000	1600	18	41	32	1400	25	260	9.2	14	44	55	260	230	150	5.9	89
Mercury	0.29	57	8	0.044J	0.080 J	<0.10	6.2	0.051 J	1.1	<0.12	0.017J	0.069 J	0.15	0.6	0.54	0.25	0.035 J	12
Nickel	24	34	14	25	27	37	56	44	36	7.7	14	34	37	26	28	43	10	182
Selenium	0.71	5.5	2.3	0.49	<0.51	0.54	2.3	<0.47	4.7	1.4	0.83	0.62	0.85	9.4	4.6	0.73	<0.41	2
Silver	1	3.7	0.23 J	<0.45	<0.51	<0.47	<0.60	<0.47	0.96 J	<0.50	<0.40	<0.45	<0.51	0.63	0.66	0.17 J	<0.41	3,120
Thallium	<1.2	1.5 J	<0.96	<0.90	<1.0	<0.93	1.6	<0.93	1.2 J	<1.0	<0.80	<0.91	<1.0	<1.2	<0.87	<0.95	<0.82	1.5
Vanadium	20	24	19	8.5	17	14	23J	14	30	12	15	10	10	18	13	16	4.6	130
Zinc	390	4500	1300	26	92	46	1000	71	700	19	34	100	66	500	300	150	11	44,000
J = Result is less the	an the Repo	orting Limi	t, but great	er than or e	equal to the	Maximum	Detection	Limit and th	ne concentr	ation is an	approxima	te value						
= Exceeds Leac	h-based va	lue for sour	$rces \ge 1/2$ a	cre (mg/kg)(OEPA, 20	008)												

Table 16. Analytical results for volatile organic chemicals detected in soil for which Ohio EPA has generic leach-based soil values (OEPA, 2008).

BORING NUMBER	BW-1	BW2	BW3	BW4	BW-5	BW6	BW7	BW7A	BW8	BW8A	BW9	BW9A	BW10	BW10A	Generic
Depth	4-6 Ft	2-4 Ft	2-4 Ft	2-4 Ft	4-6 Ft	1-2 Ft	2-4 Ft	2-4 Ft	4-6 Ft	4-6 Ft	0-2 Ft	0-2 Ft	2-4 Ft	2-4 Ft	leach-based
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	3/21/2014	3/31/2014	soil values Soil Type I
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.017
Toluene	<0.0035	<0.0029	<0.0037	0.00021 J	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	6.8
Ethylbenzene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0056	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	12
Total Xylenes	<0.007	<0.0057	<0.0073	<0.0064	<0.0048	<0.0069	<00.0057	<0.0028	<0.0069	<0.0046	<0.0055	<0.0060	<0.0066	<0.0051	156
Styrene	<0.0035	<0.0029	<0.0037	<0.0032	0.000093 J	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.46
Methyl Ethyl Ketone	0.0014 J	<0.011	<0.015	<0.013	<0.0097	<0.014	0.00085 J	<0.011	<0.014	<0.0093	<0.011	<0.012	<0.013	<0.010	1.80
Carbon Tetrachloride	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.25
1,2-Dichloroethane	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.0030
1,1,1-Trichloroethane	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	1.20
Vinyl Chloride	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.0090
1,1-Dichloroethene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.28
cis-1,2-Dichloroethene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.12
trans-1,2-Dichloroethene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.41
Trichloroethene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.036
Tetrachloroethene	<0.0035	<0.0029	<0.0037	<0.0032	<0.0024	<0.0035	<0.0029	<0.0028	<0.0035	<0.0023	<0.0028	<0.0030	<0.0033	<0.0025	0.15
J = Result is less than the	Reporting	Limit, but	greater than	or equal to t	he Maximun	n Detection	Limit and t	he concenti	ration is an	approxima	te value				

Table 17. Analytical results for semi-volatile organic chemicals detected in soil for which Ohio EPA has generic leach-based soil values (OEPA, 2008).

,		0					0		,		,							
BORING NUMBER	BW1	BW1	BW2	BW3	BW3	BW4	BW4	BW5	BW5	BW6	BW6	BW7	BW7	BW8	BW8	BW9	BW10	Leach-
Depth	4-6 Ft	10-12 Ft	2-4 Ft	1.5-2 Ft	2-4 Ft	2-4 Ft	8-10 Ft	1-2 Ft	10-11 Ft	1-2 Ft	4-6 Ft	2-4 Ft	6-8 Ft	4-6 Ft	6-8 Ft	2-4 Ft	2-4 Ft	based soil
Sample Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/20/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	3/21/2014	value, Soil Type I mg/kg
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg
Naphthalene	<0.033	13	0.08	0.033	0.024	0.13	0.1	0.086	0.19	0.017	0.022	0.13	0.37	0.083	0.15	0.048	0.094	0.27
Exceeds generic lead	ch-based so	il values fo	r Soil Type	e I (Ohio El	PA, 2008)													

SECTION 5 RISK MITIGATION WORK PLAN

5.1 Risks Identified in the Property-Specific Risk Assessment

As explained in the previous sections of this report, the risks identified in the property specific risk assessment include the following:

- 1) dermal exposure to arsenic for construction/excavation workers; and
- 2) inhalation exposure to mercury for construction/excavation workers.

No other risks were determined in the property specific risk assessment.

5.2 Construction Techniques and Practices to Mitigate the Identified Risks

The Lancaster Interim Policy on Development within the Wellhead Protection Areas states that "*The VAP certified Professional in conjunction with the Structural Engineer and the Site Engineer shall prepare a Risk Mitigation Work Plan that recommends construction techniques and practices required to mitigate the risks identified in the PSRA*". The following items constitute the formal Risk Mitigation Work Plan required by the Interim Policy:

- Fairfield County will require, as part of the bid documents, that contractors develop a health and safety plan to address the potential dermal risk from arsenic. Bid specifications containing this information will be submitted to the City in a separate document. As stated previously, the risk from arsenic can be managed by limiting construction/excavation workers to no more than 90 fulltime days onsite or by requiring workers (as part of a health and safety plan) to wear gloves and long sleeves. Workers should also be reminded that showering after work will further reduce their exposure risk.
- 2) Fairfield County will require, as part of the bid documents, that contractors develop a health and safety plan to address the potential inhalation risk from mercury. Bid specifications containing this information will be submitted to the City in a separate document. As stated previously, the risk from mercury can be managed (as part of a health and safety plan) by limiting either the number of hours and/or the number of days of exposure for the worker to no more than 200 fulltime days.

Although the Lancaster Interim Policy on Development within the Wellhead Protection Areas requires that "*The Risk Mitigation Work Plan shall be submitted to the City for review*" and then "*Upon approval by the City, techniques and practices in the Risk Mitigation Work Plan shall be incorporated into the plans*", Fairfield County has chosen to be proactive and include these items prior to the approval by the City.

5.3 Fairfield County Voluntary Measures Not Required by the Lancaster Interim Policy

As stated above, no additional measures are required by the Lancaster Interim Policy. However, Fairfield County has long been on record that it is committed to taking measures that it feels are necessary to protect the valuable water resources of the Miller Park Wellfield – for all residents. Fairfield County will perform the following practices independent of the requirements of the Lancaster Interim Policy for Development within the Wellhead Protection Zones. As such, these measures need no approval from the City.

- In order to minimize the direct transport of fill materials downward into underlying aquifer material, the fill materials be "cased off" as part of the installation of the auger cast piling foundations for the building. Location of the pilings as wells as specifications for the installation of the auger cast pilings with surface casings will be provided for informational purposes in a separate document;
- 2) A qualified environmental professional will be present onsite during excavation activities to confirm that the fill does not contain quantities of industrial waste, residual waste, or municipal waste that may make the fill subject to additional regulation;
- 3) Onsite fill materials will be managed within the footprint of the current filled area (the whole site). If soil fill is disposed offsite, the soils will be disposed at a solid waste landfill; and
- 4) In order to minimize infiltration and future leaching of constituents from the fill, the entire site will be "capped" by placing all fill materials under a building, asphalt, or a synthetic liner underneath the grass areas.

Respectfully submitted, BENNETT & WILLIAMS ENVIRONMENTAL CONSULTANTS, INC.

Linde Aller

Linda Aller, RS, CPG Principal Geologist

Ut Ghes housedky

Kerry Zwierschke, PhD., P.E. Principal Engineer

SECTION 6 REFERENCES

- ATSDR, 2013. Thallium, CAS#:7440-28-0, Agency for Toxic Substances & Disease Registry, Division of Toxicology and Human Health Services ToxFAQs, 2 pp.
- Bennett & Williams, July 7, 2014a. Limited Phase II Environmental Site Assessment for the Proposed Fairfield County Jail/Public Safety Facility, 334 West Wheeling Street, Lancaster, Ohio, prepared for the Fairfield County Commissioners, 601 pp.
- Bennett & Williams, October 2, 2014b. Vapor Intrusion Assessment Proposed Fairfield County Jail/Public Safety Facility, 334 West Wheeling Street, Lancaster, Ohio. 187 pp.
- Bennett & Williams, November 10, 2014c. Initial Air Sampling for Lead at the Proposed Fairfield County Jail.Public Safety Facility and Existing Sheriff's Office and MSMJ, 334 West Wheeling Street, Lancaster, Ohio. 40 pp.
- Bennett & Williams, April 28, 2015a. Installation and Sampling of Monitoring Wells MW-9S and MW-9D, Fairfield County Jail/Public Safety Facility, 334 West Wheeling Street, Lancaster, Ohio, 156 pp.
- Bennett & Williams, April 28, 2015b. Evaluation of the Soil Leaching to Groundwater Pathway for Selected Metals for the Offsite Receptor of the Miller Park Wellfield, Lancaster, Ohio, prepared for the Fairfield County Commissioners, 48 pp.
- Bennett & Williams, January 2, 2015c. Supplement to Vapor Intrusion Assessment Proposed Fairfield County Jail/Public Safety Facility, 334 West Wheeling Street, Lancaster, Ohio. 84 pp.
- Environmental Quality Management, 2004. User's guide for evaluating subsurface vapor intrusion into buildings. Report prepared for Industrial Economic Incorporated. EPA contract number 68-W-02-33, work assignment 004, PN 030224.0002, 133 pp.
- Ohio EPA, 2005. Petroleum Contaminated Sites Guidance Document for Emergency Response Actions, Ohio EPA Division of Emergency and Remedial Response, Emergency Response and Special Investigations Section, DERR-00-ER-013, dated March 2005, 34 pp.
- Ohio EPA, October 2008. Voluntary Action Program Derived Leach-Based Soil Values, Technical Guidance Document, 3rd Revision, Division of Emergency and Remedial Response, 14 pp.

- Ohio EPA, 2010. Sample collection and evaluation of vapor intrusion to indoor air for remedial response and voluntary action programs, guidance document. Division of Environmental Response and Revitalization, 114 pp.
- Ohio EPA, April 2013a. Ambient Ground Water Quality Monitoring Program, Inorganic round Water Well Summary Report, Lancaster Wellfield, Well 28, Division of Drinking and Ground Waters, 1pp.
- Ohio EPA, June 21, 2013b. Ambient Ground Water Quality Monitoring Program, Inorganic Ground Water Quality Time Series, Lancaster Wellfield, Well 28, Division of Drinking and Ground Waters, 6 pp.
- US EPA, February 5, 2014a. Basic information about Thallium in Drinking Water, accessed April 25, 2015, <u>http://water.epa.gov/drink/contaminants/basicinformation/thallium.cfm</u>.
- US EPA, February 9, 2014b. Basic Information about 1,2-Dibromo-3-Chloropropane (DBCP) in Drinking Water, accessed April 25, 2015, <u>http://water.epa.gov/drink/contaminants/basicinformation/1-2-dibromo-3-</u> <u>chloropropane.cfm</u>.
- USEPA, 2014c. Human health and lead, addressing lead at Superfund sites. http://aaa.epa.gov/superfund/lead/health.htm, accessed June 24, 2014.

Appendix A

Water Quality Data Ohio EPA

April 2013

Ambient Ground Water Quality Monitoring Program Division of Drinking an Inorganic Ground Water Well Summary Report

System Name: Lancaster We	llfield		Well N	lum: 28	3	Ambient Well ID: 39FAI00195 PWS Type:							
Status: ActiveRotational	OEPA Distric	t: CDO	County: F	airfiel	d		PWS Type:						
Lith. Open Section: USG	Major Ag	uifer: San	d and Gra		Aquifer Na				Well Log	#: 450	884		
	992 to 11				Depth (ft):		· ·	1g Length (
J/J/1	JJZ (0 11	/ 5/ 2011					••••						
	Unite	Report.	Mean	Min	Sta Max	tistics	Ctul Davi	Latest	Total	ample Cou	% ND		
-	Units	Limit	Wedit	IVIIII	IVIAX	Median	Std. Dev.	Sample	TUtai	ND	70110		
FieldParameter													
Oxidation Reduction Potential (ORP)	mV	N/A	-36.9	-92	-4	-41	32.4	-4	7	N/A	N/A		
Specific Conductance	umhos/cr		908.4	450	1125	963	222.6	955	12	N/A	N/A		
Temperature, water	deg C	N/A	13.9	11	17.4	13.9	1.6	13.9	18	N/A	N/A		
Total Dissolved Solids (TDS), Field	mg/L	N/A	687.3	659	722	672	30.3	659	7	N/A	N/A		
Turbidity	NTU umbas/or	N/A	1.2	0.5	1.85	1.175	1	1.85	2	N/A	N/A		
Uncorrected Conductance	umhos/cr S.U.	n N/A N/A	713.3	380 6.66	<u>1000</u> 7.5	775	233.9 0.2	860 7.15	6 17	N/A N/A	N/A N/A		
рн Metals-ICP	5.0.	N/A	/	0.00	7.5	7.05	0.2	7.15	1/	N/A	I N/A		
	ug/I	200	200			200	N/A	200	17	17	100		
Aluminum Barium	ug/L ug/L	200 15	200 93.6	ND 70	ND 128	200 95	N/A 15.7	200 127	<u>17</u> 21	<u>17</u> 1	<u>100</u> 4.8		
Barium Calcium	mg/L	2	142.5	118	128	141.5	13.5	127	21	0	4.8		
Chromium	ug/L	2	24.7	ND	ND	30	N/A	2	21	21	100		
Copper	ug/L	2	9.4	3	15	10	4.9	7.5	21	14	66.7		
Hardness, Ca + Mg	mg/L	10	503.6	295	598	509	68.6	453	17	0	0		
Iron	ug/L	50	4725.4	104	6170	5175	1597.1	4450	22	0	0		
Lead	ug/L	2	2	ND	ND	2	N/A	2	21	21	100		
Magnesium	mg/L	1	41.3	34	48	41	4.2	36	22	0	0		
Manganese	ug/L	10	185.4	123	241	182.5	32	162	22	0	0		
Nickel	ug/L	2	32.9	2.4	3.3	40	0.5	3.3	21	18	85.7		
Potassium	mg/L	2	2.2	2	3	2	0.3	2	22	1	4.5		
Sodium	mg/L	5	29	23	36	27	4.1	36	22	0	0		
Strontium	ug/L	30	3120.6	2670	3540	3115	249.7	2670	18	0	0		
Zinc	ug/L	10	10.1	13	13	10	0	10	21	20	95.2		
Metals-ICPMS													
Arsenic	ug/L	2	11.4	8.8	18	12	2.5	11	21	2	9.5		
Cadmium	ug/L	0.2	0.2	ND	ND	0.2	N/A	0.2	21	21	100		
Selenium	ug/L	2	2.1	3	3	2	0	2	21	18	85.7		
NaOH-Preserved				i									
Cyanide	ug/L	10	10	ND	ND	10	N/A	10	10	10	100		
Nutrients-Demand													
Ammonia	mg/L	0.05	0.5	0.39	0.941	0.4645	0.1	0.475	22	0	0		
Carbon, Total Organic (TOC)	mg/L	2	2	ND	ND	2	N/A	2	21	21	100		
Chemical Oxygen Demand (COD)	mg/L	20	12.3	12	24	10	6.2	20	22	19	86.4		
Nitrate+Nitrite as N	mg/L	0.1	0.1	0.12	0.39	0.1	0.2	0.1	22	20	90.9		
Nitrogen, Nitrite (NO2) as NO2	mg/L	0.02	0	ND	ND	0.02	N/A	0.02	2	2	100		
Nitrogen, Total Kjeldahl (TKN)	mg/L	0.2	0.8	0.55	0.97	0.76	0.2	0.68	11	0	0		
Phenols (mixture)	ug/L	10	10 0	ND 0.017	ND 0.05	10	N/A 0	10	8 21	8	100		
Phosphorus	mg/L	0.01	U	0.017	0.05	0.05	I U	0.01	II 21	18	85.7		
Jnpreserved		_ I	266.2	210	404	200	22.4	404					
Alkalinity, Total	mg/L	5	366.3	319	404	364	23.1	404	20	0	0		
Bromide	ug/L mg/L	20 5	72.3	66 27	79.1	71.95	6.9	66 71	4	0	0		
Chloride Fluoride	mg/L mg/L	0.2	48.6 0.4	0.3	71 0.8	45.85 0.37	12.1 0.2	0.38	22 14	0	4.5 0		
Solids, Total	mg/L	10	778	760	812	762	29.5	0.38 762	3	0	0		
Sulfate	mg/L	10	130.3	62.3	196	134	42.4	62.6	21	0	0		
Total Dissolved Solids	mg/L	10	653.8	578	730	661	46.3	578	20	0	0		
pH	S.U.	1	7.2	7.17	7.19	7.18	0	7.17	20	0	0		

Explanation

Report Date: 4/26/2013

Appendix B

Time Series Data Water Quality

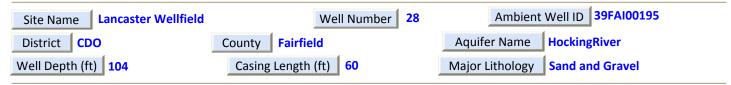
Division of Drinking and Ground Waters Report Date: 6/21/2013

Ambient Ground Water Quality Monitoring Program

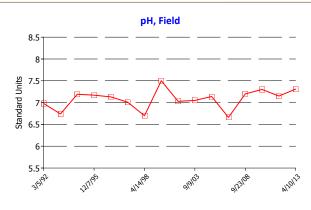
Inorganic Ground Water Quality Time Series

This Ground Water Quality Report summarizes the raw (untreated) inorganic ground water history for a single well (see box below). Time series graphs are a concise method of visualizing the geochemical variability within a water well over time.

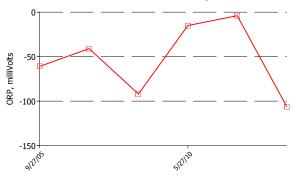
Well Number: 28
County: Fairfield
Well Depth (ft) 104
Geologic Setting: Buried_Valley

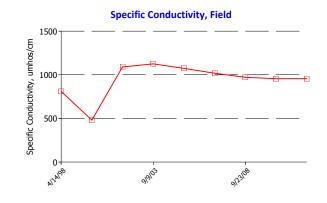

In the graphics on the following pages, the sample dates are shown on the horizontal axes, and the parameter concentrations are indicated on the vertical axes. As an aid to the reader, Maximum Concentration Levels (MCLs in red text) and Secondary MCLs (SMCLs in blue text) have been noted on the graphs where applicable. Action Levels (ALEs, in red text) have also been indicated for lead and copper results. While MCLs, SMCLs and ALEs are convenient benchmarks for interpreting water quality data, please note that they apply strictly to compliance data from public water supply wells, and not to the raw, untreated ground water samples represented in this report.

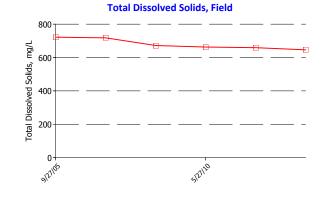
The Ambient Ground Water Quality Monitoring Program (AGWQMP) was established by Ohio Environmental Protection Agency to characterize Ohio's ground water quality in order to enhance water resource planning and prioritize ground water protection activities. Managed by the Division of Drinking and Ground Waters, the AGWQMP database now contains some 215 active water supply wells across Ohio.

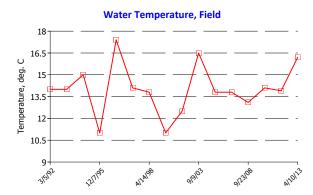

For additional information or answers to questions concerning the Ambient Ground Water Quality Monitoring Program, contact Christopher Kenah or Michael Slattery at (614)-644-2752 at Ohio EPA in Columbus, Oh., or email us at: gwq@epa.state.oh.us.

The Division of Drinking and Ground Waters (DDAGW) is providing information via this Web page as a public service. While Ohio EPA believes this information to be reliable and accurate, some data may be subject to human, mechanical, or analytical error. Because of the variability inherent in ground water data, caution must be taken in extrapolating point data beyond the collection area. The accuracy, completeness, suitability, and conclusions drawn from the information presented here are the sole responsibility of the user.

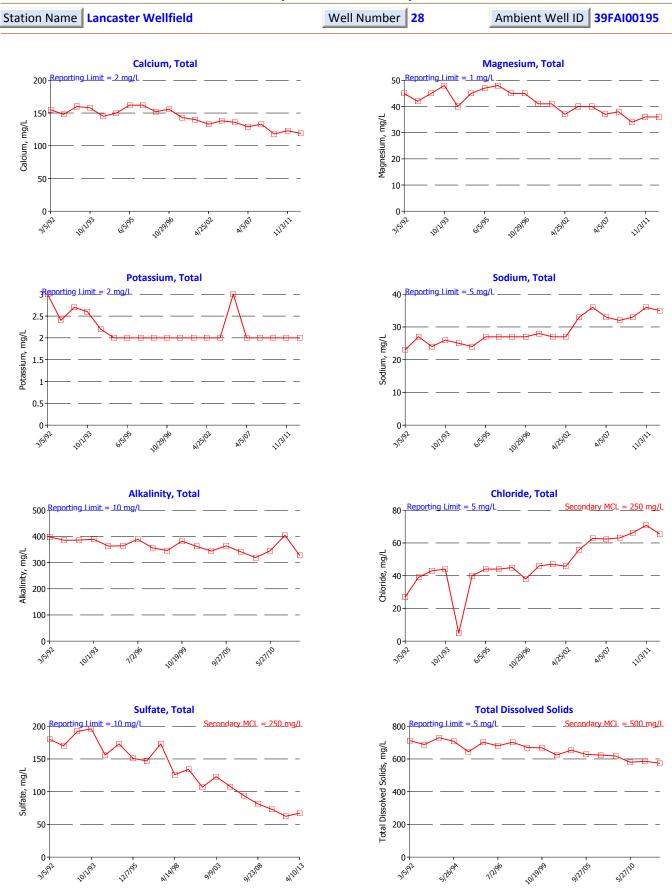

Inorganic Time Series



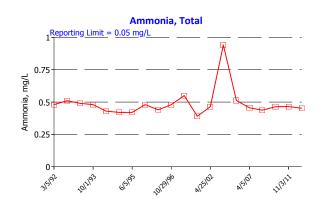

FIELD DATA

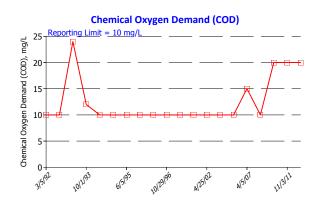


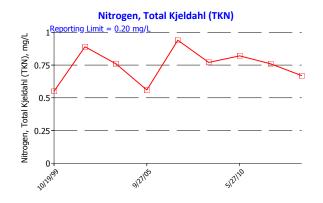
Oxidation Reduction Potential, Field

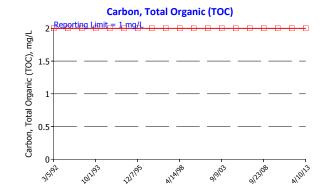


MAJOR IONS, ALKALINITY, and TDS

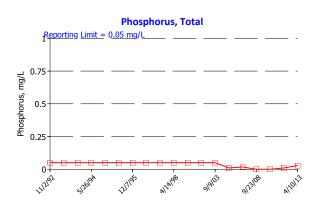



NUTRIENTS

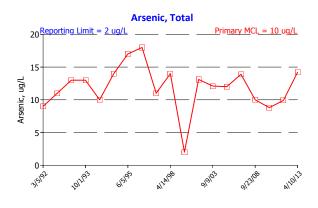

Station Name Lancaster Wellfield

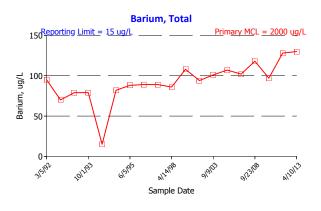

Well Number 28

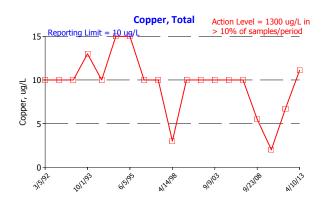
Ambient Well ID 39FAI00195

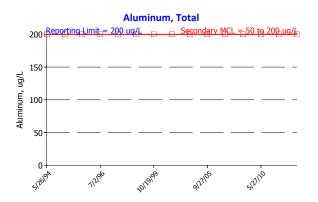


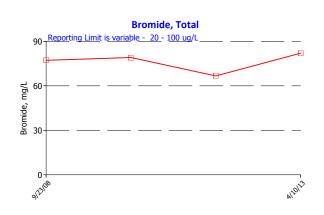
Nitrate+Nitrite as N $0.5\frac{\text{Reporting Limit}}{1} = 0.10 \text{ mg/L}$ Primary MCL = 10 mg/L Nitrate+Nitrite as N, mg/L 0.375 0.25 0.125 <u>6</u>-E 0-11/3/11 315192 1011193 4725102 AISIOI 615195 10129194

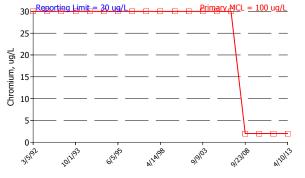


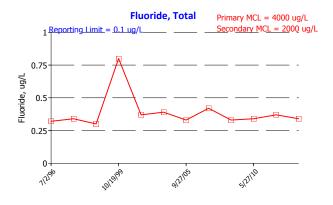

TRACE IONS

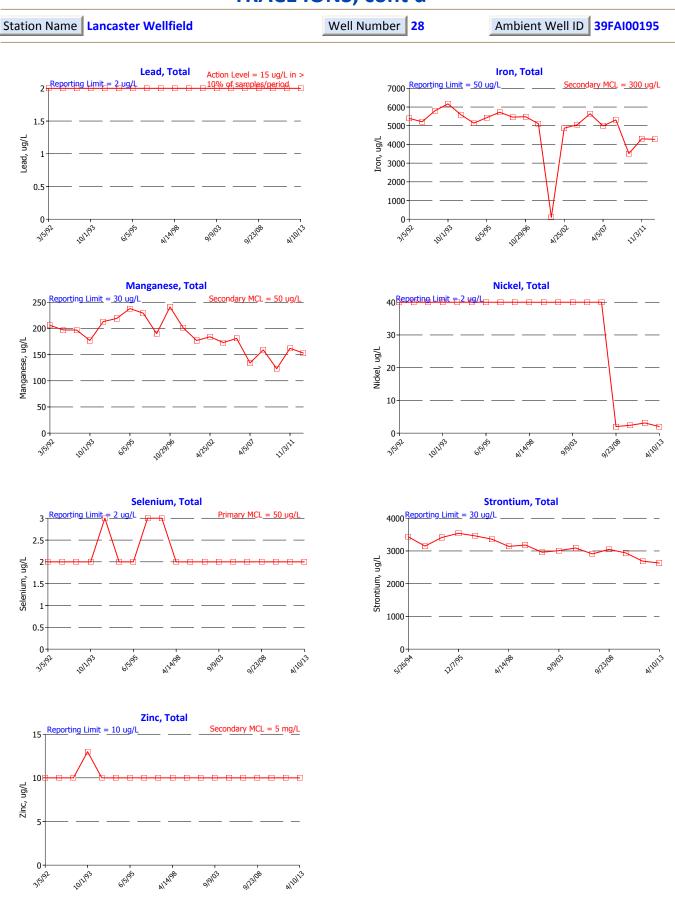

Well Number 28


Ambient Well ID 39FAI00195









Chromium, Total

TRACE IONS, cont'd

Appendix C

City of Lancaster Well Locations, Logs and Water Quality Data

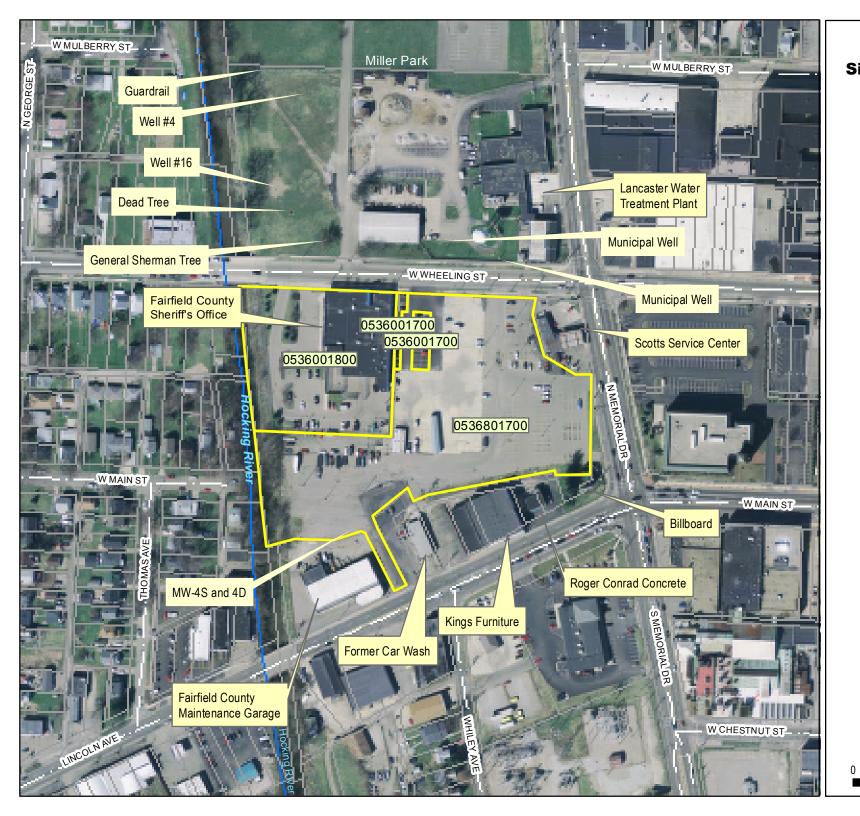
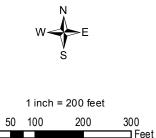



Figure 1. Site location map of proposed Fairfield County Jail/Public Safety Facility.

Water Well Log and Drilling Report

Ohio Department of Natural Resources Division of Soil and Water Phone: 614-265-6740 Fax: 614-265-6767

Well Log Number: 816585

View Image of Original Well Log

ORIGINAL OWNER AND LOCATION	N	ALC: HEALTHREE		
Original Owner Name: CITY OF LANC	CASTER			
County: FAIRFIELD	Township: HOCKING	Se	ection	Number:
Address: 225 MEMORIAL DR N		Lo	ot Num	ber:
City:	State: OH	Zij	p Code	: 43130
Location Number:	Location Map Year:	Lo	cation	Area:
Latitude: 39.7158	Longitude: -82.60696			
CONSTRUCTION DETAILS				
Borehole Diameter: 1: asdfasdf	Borehole Depth: 1: 29 ft.			Depth to Bedrock:
2:	2:			
Casing Diameter: 1: 2 in.	Casing Length: 1: 19 ft.			Casing Thickness: 1:
2:	2:			2:
Casing Height Above Ground:	Aquifer Type: SAND & GRAVEL			
Date of Completion:	Total Depth: 29 ft.			Well Use:
Driller's Name: BELASCO DRILLING, IN	IC.			
Screen Diameter:	Slot Size:			Screen Length:
Туре:	Material:			
Set Between:				
Gravel Pack Material/Size:	Vol/Wt Used:			
Method of Installation:	Placed:			
Grout Material/Size:	Vol/Wt Used:			
Method of Installation:	Placed			
WELL TEST DETAILS				
Static Water Level:	Test Rate:			Associated Reports
Drawdown:	Test Duration:			
COMMENTS:				
-	WELL LOG	_	_	
Formations		From	То	
SAND GRAY SILTY CLAY		0 5	5 22	
GRAY SAND & GRAVEL		22	22	
		22	20	
	Printing Tips (opens in new windo	w)		
	Print This Page Close			
		1		

Well log questions - Web site questions - Web policies

https://apps.ohiodnr.gov/water/maptechs/wellogs/appNEW/report.aspx?wln=816585

1/15/2015

DNR 7802.94 TYPE OR USE PEN SELF TRANSCRIBING PRESS HARD	Ohio Dep Divison of W	artment aler, 193	ORILLING REPORT 816585 of Natural Resources 816585 39 Fountain Square Drive 94.596 24 Phone (614) 265-6739 Permit Number	7
COUNTY Faitfield	TOWNSHI	÷	Hocking SECTION/LOT No (Clicile One)	
OWNER/BUILDER DIVISION OF CURRENT (Crede One or Bort) First	Losi (Address of	Y ADDRI well locati	ess 225 N. Memorial Pr. Lancestor	
LOCATION OF PROPERTY Lance	ustor - O	<u>H</u>	H 3/20 TION DETAILS GROUT	
	CONS	TRUC	GROUT	
	. Wall Thickness Z	<u>112</u> in.	Malerial Bontomite Volume used 50165	
Diameter in. Length: ft	. Wall Thickness	เก.	Method of Installation <u>T-c-mire</u> Depth: placed from <u>14</u> II. to <u>Z</u>	
Type: Disteel DiGalv. PVC	2 Other		GRAVEL PACK (Filter Pack) Material Sund Volume used 350165	
Joints: X Threaded X Welded X Solvent	2 Other		Method of installation Drop	
Liner: MA Length Type				ft.
SCREEN	PU PU	2	Pitless Device Adapter Preassembled unit	
Type (wire wrapped, louvered, etc.) Sto Hed	Material		Use of Well <u>Monitoring</u> Well Di Rolary Dable WAugered Driven Dug Other	
Set between 28.9 ft. and 1.5.	11. Slot al	0	Date of Completion 7/27	*
WELL LOG	+		WELL TEST	
INDICATE DEPTH(S) AT WHICH WATER IS ENC	OUNTERED.		Bailing CPumping' Other	
 Show color, texture, hardness, and formation: sandstone, shale, limestone, gravel, clay, sand 	d, elc. From	To	Test rate gpm Duration of test Drawdown	
Fill - Subara + Founday	Send 0	5'	Measured from: top of casing ground level Other Static Level (depth to water) ft. Date:	
Silty Clay, grig, moi		22'	Quality (clear, cloudy, taste, odor) n. Date:	
Plastic		_		
	a.e., 22'	29'	(Altach a copy of the pumping test record, per section 1521.05, ORC)	
Sand and Gravel,	9-69 26	<u>~7</u>	PUMP	
wet			Type of pump Capacity Pump set at	-
	{		Pump installed by	
Water @ 22'			WELL LOCATION	
			Location of well in State Plane coordinates, if available: Zone x x	
			Elevation of wellft./m. Datum plain: DNAD27 DNAD83 Source of coordinates: DGPS Dsurvey Dother	
			Sketch a map showing distance well lies from numbered state highway	s,
Ралистична произволя фолу формацион и спорта и произволя с полта с полта с полта с полта с полта с полта с пол Р			street intersections, county roads, buildings or other notable landmarks. North	
			- kincola Ave	
			mw 4s	
			X X	
			e e	Ea
				ş
۲. «May and an	·		Furticity	
			Likeeling St.	
			Wheeling st.	
			South	
"(Il additional space is needed to complete well log, use r Drilling Firm BELASCO Dricci-	Service		I hereby certify the information given is accurate and correct to the best of my knowled	dge.
Orilling Firm BELASCO Dricc		<u> </u>	Signed	
Address 1519 Alumerce	<. Dh.		Date	
	· · · · · · · · · · · · · · · · · · ·			
		T		
	<u> </u>	1		

Water Well Log and Drilling Report

Ohio Department of Natural Resources Division of Soil and Water Phone: 614-265-6740 Fax: 614-265-6767

Well Log Number: 816586

View Image of Original Well Log

ORIGINAL OWNER AND LOCATION		-		
Original Owner Name: CITY OF LANCAST	TER			
County: FAIRFIELD	Township: HOCKING		Section	Number:
Address: 225 MEMORIAL DR N			Lot Num	ber:
City:	State: OH		Zip Code	e: 43130
Location Number:	Location Map Year:		Location	
Latitude: 39.7158	Longitude: -82.60696			
CONSTRUCTION DETAILS				
Borehole Diameter: 1: asdfasdf	Borehole Depth	: 1: 94 ft.		Depth to Bedrock:
2:	•	2:		
Casing Diameter: 1: 2 in.	Casing Length:	1. 85 #		Casing Thickness: 1:
2:	ouonig Longun	2:		2:
	A quifer Tunes			2.
Casing Height Above Ground: Date of Completion: 10/2/1995	Aquifer Type: Gl Total Depth: 94 fl			Well Use:
Driller's Name: BELASCO DRILLING, INC.	Total Depth. 94 h	ι.		wen ose.
Screen Diameter:	Slot Size:			Screen Length:
Type:	Material:			Screen Length.
Set Between:	Waterial.			
Gravel Pack Material/Size:	Vol/Wt Used:			
Method of Installation:	Placed:			
Grout Material/Size:	Vol/Wt Used:			
Method of Installation:	Placed			
WELL TEST DETAILS				
Static Water Level:	Test Rate:			Associated Reports
Drawdown:	Test Duration:			
COMMENTS:				
	WELL LOG			
Formations		Fro	m To	
SAND			0 5	
GRAY SILTY CLAY			5 22	
SAND & GRAVEL		2	90	
GRAY TILL		ç	90 94	
	Printing Tips (open	1		
	Print This Pag	ge Close		
Well Id	og questions - Web sit	e questions - Web po	DIICIES	

TYPE OR USE PEN SELF TRANSCRIBING	Ohio Departmen Divison of Water, 19	DRILLING REPORT 816586 at of Natural Resources 816586 339 Fountain Square Drive 94-549 24 Phone (614) 265-6739 Permit Number
COUNTY Fair Field		Hocking SECTION/LOT No.
OWNER/BUILDER DIVISION OF WAY	PROPERTY ADDR	Hocking SECTION/LOT No (Circle One) RESS_22.5 N. Memorial Dr Lancastor
OCATION OF PROPERTY Lunaster		<u>4 31 20</u> Zo Cod+4
		CTION DETAILS
	in.	GROUT n. Malerial Bentonits Volume used 200165
Diameter <u>c</u> in. Length <u>0.5</u> ft. Wall f Diameterin. Length <u>f</u> t. Wall f		
		Depth: placed irom7_5It, to2ft
	er	GRAVEL PACK (Filter Pack)
oints: 😡 Threaded 🗊 Welded 🗊 Solvent 🗊 Oth		Material Natural Volume used NA
		n. Depth: placed from 96 ft. to 75 ft.
CREEN		Pitlass Device Adapter Preassembled upit
		Use of Well Monitoring well
angth 10 ft. Diameter	<u>i</u> r	n. □ Rotary □Cable USAugered □ Driven □ Dug □ Olher
et between <u>95.5</u> <u>ft.</u> and <u>85.5</u> <u>ft.</u> WELL LOG*	5101_,010	Date of Completion 10/2/95 WELL TEST
IDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTER	ED.	□ Bailing □ Pumping □ Other
Show color, texture, hardness, and formation:		Test ratehrs.
sandstone, shale, limestone, gravel, clay, sand, etc.	From To	Drawdown ft,
Fill - Subase - Foundary sand	0 5'	Measured from: top of casing ground level Other
Silty clay , grey, moist, Plast	i 5 22'	Quality (clear, cloudy, taste, odor)
	22' 90'	'(Attach a copy of the pumping test record, per section 1521.05, ORC)
Sand + gravel, wett	20 000	Type of pump Capacity gpm
(wat. Q 22')		Pump set al
		Pump installed by
Glacial till, green/grey	90' 94'	
		Location of well in State Plane coordinates, if available:
		Zons y Elevation of well ft./m. Datum plain: DNAD27 DNAD83
		Source of coordinates: GPS Survey Other
		 Sketch a map showing distance well lies from numbered state highways, street intersections, county roads, buildings or other notable landmarks.
		North
· · · · · · · · · · · · · · · · · · ·		Lincoln Ave
		- MW4D
		× <
		e a s
	.4	- Star Star Star Star Star Star Star Star
		Fair for the Th
		County /
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		wheeling St.
additional space is needed to complete well log, use next conservational space is needed to complete well log.	ulively numbered form.)	South I hereby certify the information given is accurate and correct to the best of my knowledge.
ling Firm Belasco Driching Se		Alla and alla
	Dr.	Daie
an colomation akin	1(77 17	RK F99

	T T •/	Detection	MCL/SMCL/										MW-4D							
PARAMETERS	Units	Limit	ACTION LEVEL	10/17/1995	1/15/1996	4/22/1996	7/29/1996	2/11/1997	4/28/1997	7/7/1997	10/21/1997	6/24/1998	12/16/1998	7/20/1999	8/24/2000	11/27/2000	5/30/2001	10/17/2001	5/8/2002	11/1/2002
Inorganics																				
CYANIDE	mg/L	5	0.2	< 0.005	NA	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.005	< 0.005
SULFIDE	mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	<1.0	2	< 0.05	< 0.05
Metals																				
ALUMINUM	ug/L		0.05 to 0.2 mg/L (S)	220	<50.0	<50.0	<200.0	<500.0	<500.0	<500.0	<500.0	<500.0	<500.0	<500.0	<50.0	<50.0	NA	NA	NA	NA
ANTIMONY	ug/L	4	6	<5.0	<5.0	<5.0	<60.0	4.7	<4.0	6.2	7.5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
ARSENIC	ug/L	5	50	5.0	9.0	<3.0	10.9	12.0	13.0	1.0	1.0	8.8	8.9	7.7	6.1	6.0	9.0	8.0	6.7	6.7
BARIUM	ug/L	10	2000	290.0	340.0	200.0	<200.0	350.0	340.0	358.0	337.0	354.0	355.0	338.0	404.0	377.0	440.0	393.0	NA	NA
BERYLLIUM	ug/L	0.5	4.0	<5.0	<5.0	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1.0	<1.0	< 0.50	< 0.50
CADMIUM	ug/L	5	5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0
CALCIUM	mg/L	0.05		95	100	72	310	97	97	96	102	81	96	103	96	110	110	100	99	96
CHROMIUM	ug/L	5	100	<20.0	<20.0	<20.0	<10.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<10.0	<10.0	<5.0	<5
COBALT	ug/L	50		<20.0	<20.0	<20.0	<50.0	<100.0.	<100.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<10.0	<10.0	<20.0	<50.0	<50
COPPER	ug/L	20	1000 (S) / 1300 (A)	<10.0	<10.0	<10.0	<25.0	<20.0	<20.0	<10.0	<10.0	11.0	<10.0	<20.0	<20.0	<10.0	NA	NA	NA	NA
IRON	ug/L	30	300 (S)	330	2200	700	12500	3800	3500	3000	3100	3300	3200	3100	3300	3480	3730	3410	3340	3090
LEAD	ug/L	2	15 (A)	<2.0	<2.0	<2.0	<3.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
MAGNESIUM	mg/L	0.005		29.0	29.0	19.0	42.0	28.0	28.0	27.0	28.0	26.0	28.0	28.0	28.2	29.0	32.0	31.0	31.9	28.8
MANGANESE	ug/L	20	50 (S)	180	190	140	320	180	190	170	160	174	162	168	189	200	220	200	200	181
MERCURY	ug/L	0.2	2.0	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.20	<0.20
NICKEL	ug/L	20	100 (O)	30	<20.0	<20.0	<40.0	<40.0	<40.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<10.0	<10.0	<10.0	<20.0	<20
POTASSIUM	mg/L	0.05		2	1.6	15	< 5	1.4	1.7	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	ug/L	5	50	<4.0	<4.0	<4.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
SILVER	ug/L	1	100 (S)	<10.0	<10.0	<10.0	<10.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10.0	<10.0	<10.0	<1.0	<1.0
SODIUM	mg/L	0.05		20	16	18	38	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	ug/L	1.5	2.0	<2.0	<2.0	<2.0	<10.0	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.0	<1.0	<1.0	<1.5	<1.5
TIN	ug/L	100		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50.0	<50.0	<50.0	<100	<100
VANADIUM	mg/L	0.005		< 0.01	< 0.01	< 0.01	< 0.05	< 1	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.005	< 0.005	< 0.01	< 0.01	0.02	< 0.005	< 0.005
ZINC	ug/L	20	5000 (S)	30	50	20	36	<10.0	10	<10.0	<10.0	21	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20
VOLATILE ORGANIC	CS VOC'S			D^1	ND	ND	D^2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Method 8260		Varies	Varies	D ¹ - Carbon Dis	sulfate (2ug/l)		D^2 - Carbon D	isulfate (2ug/l)												
SEMI-VOLATILE OR	GANICS			D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Method 8270		Varies	Varies																	
PESTICIDES/PCB'S				ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Method 8081		Varies	Varies																	
Field Parameters																				
TEMPERATURE	°C			16.1	12.2	15.6	18.9	12.2	12.8	13.3	12.8	13.9	12.8	NM	19.2	10.4	13.9	12.7	13.8	13.0
рН	S.U.		6.5-8.5 (S)	7.4	7.4	7.8	7.6	7.6	7.6	6.9	6.9	7.60	7.60	7.40	7.31	7.24	6.80	7.50	7.10	7.31
SPECIFIC CONDUCTA	umhos/cm			575	580	539	590	750	800	750	720	720	730	760	700	840	680	820	720	764

(O) = Ohio EPA Primary Maximum Contaminant Level

ND = NOT DETECTED

NM = NOT MEASURED

(A) = Action Level

D = DETECTED

NA = NOT ANALZED

	Detection	MCL/SMCL/				MW-4D									
Units	Limit	ACTION LEVEL	5/20/2003	11/13/2003	5/12/2004	10/27/04	5/4/05	11/2/05	4/26/06	10/26/06	5/8/07	11/14/07	6/17/08	11/4/08	7/8/09
	•	•													
mg/L	5	0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
mg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ug/L		0.05 to 0.2 mg/L (S)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ug/L	4	6	<4.0	<4.0	<4.0	<4.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
ug/L	5	50	<5.0	6.3	7.2	<5.0	6.5	7.3	7.2	9.5	9.4	7.5	9.0	10.4	<5.0
ug/L	10	2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ug/L	0.5	4.0	<0.5	< 0.50	<0.5	< 0.50	<0.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
ug/L	5	5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
mg/L	0.05		103	110	104	104	106	92	95	108	109	97	97	103	98
ug/L	5	100	<5	<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ug/L	50		<50	<50	<50	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ug/L	20	1000 (S) / 1300 (A)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ug/L	30	300 (S)	3140	3030	3220	2990	2950	3140	3120	3600	3510	3270	3140	3440	3210
ug/L	2	15 (A)	<2.0	<2.0	<2.0	<2.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
mg/L	0.005		29.7	30.7	29.9	30.4	30.2	27.6	27.5	30.8	30.9	28.2	28.0	29.8	28.7
ug/L	20	50 (S)	194	179	199	182.0	181.0	196.0	214.0	231.0	243.0	206.0	236.0	231.0	241.0
ug/L	0.2	2.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20
ug/L	20	100 (O)	<20	<20	<20	<20	<20	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ug/L	5	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ug/L	1	100 (S)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ug/L	1.5	2.0	<1.5	<1.5	<1.5	<1.5	<1.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
ug/L	100		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
mg/L	0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
ug/L	20	5000 (S)	<20	<20	<20	<20	<20	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
S VOC'S			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Varies	Varies													
GANICS			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Varies	Varies													
	•	•	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Varies	Varies													
°C			14.0	13.5	14.1	13.5	13.9	14.1	13.7	13.9	13.9	14.2	14.9	14.1	16.6
S.U.		6.5-8.5 (S)	7.19	7.31	6.75	7.39	7.43	7.42	7.30	7.35	7.35	7.29	7.38	7.27	7.38
umhos/cm			722	815	639	747	542	673	618	535	535	587	566	489	708
	mg/L ug/L ug/L <t< td=""><td>Limit mg/L 5 mg/L 0.05 ug/L 0.05 ug/L 4 ug/L 5 ug/L 10 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 20 ug/L 20 ug/L 20 ug/L 20 ug/L 20 ug/L 0.005 ug/L 20 ug/L 0.02 ug/L 0.05 ug/L 0.05 ug/L 1 mg/L 0.005 ug/L 1.5 ug/L 100 mg/L 0.005 ug/L 20 SVOC'S Varies GANICS Varies S.U. </td><td>Units Limit ACTION LEVEL mg/L 5 0.2 mg/L 0.05 ug/L 0.05 0.2 mg/L (S) ug/L 4 6 ug/L 4 6 ug/L 10 2000 ug/L 0.5 4.0 ug/L 5 5.0 mg/L 0.05 ug/L 5 5.0 mg/L 0.05 ug/L 50 ug/L 50 ug/L 50 ug/L 20 1000 (S) / 1300 (A) ug/L 20 1000 (S) ug/L 20 50 (S) ug/L 0.0 ug/L 0.0 ug/L 0.05 ug/L 0.05 ug/L 1 100 (S) mg/L 0.005 ug/L</td></t<> <td>Limit ACTION LEVEL 5/20/2003 mg/L 5 0.2 <0.005</td> mg/L 0.05 <0.05	Limit mg/L 5 mg/L 0.05 ug/L 0.05 ug/L 4 ug/L 5 ug/L 10 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 5 ug/L 20 ug/L 20 ug/L 20 ug/L 20 ug/L 20 ug/L 0.005 ug/L 20 ug/L 0.02 ug/L 0.05 ug/L 0.05 ug/L 1 mg/L 0.005 ug/L 1.5 ug/L 100 mg/L 0.005 ug/L 20 SVOC'S Varies GANICS Varies S.U.	Units Limit ACTION LEVEL mg/L 5 0.2 mg/L 0.05 ug/L 0.05 0.2 mg/L (S) ug/L 4 6 ug/L 4 6 ug/L 10 2000 ug/L 0.5 4.0 ug/L 5 5.0 mg/L 0.05 ug/L 5 5.0 mg/L 0.05 ug/L 50 ug/L 50 ug/L 50 ug/L 20 1000 (S) / 1300 (A) ug/L 20 1000 (S) ug/L 20 50 (S) ug/L 0.0 ug/L 0.0 ug/L 0.05 ug/L 0.05 ug/L 1 100 (S) mg/L 0.005 ug/L	Limit ACTION LEVEL 5/20/2003 mg/L 5 0.2 <0.005	Limit ACTION LEVEL $5/20/2003$ $11/13/2003$ mg/L 5 0.2 <0.005	Limit ACTION LEVEL $5/20/2003$ $11/13/2003$ $5/12/2004$ mg/L 5 0.2 <0.005 <0.005 <0.005 mg/L 0.05 $\sim <0.05$ <0.005 <0.005 mg/L 0.05 $\sim <0.05$ <0.05 <0.05 mg/L 0.05 $\circ 0.2 mg/L$ (S) NA NA NA ug/L 4 6 <4.0 <4.0 <4.0 ug/L 5 50 <5.0 6.3 7.2 ug/L 10 2000 NA NA NA ug/L 0.5 4.0 <0.5 <0.5 <0.5 ug/L 0.05 $-$ 103 110 104 ug/L 50 $-$ 103 110 104 ug/L 20 1000 (S) / 1300 (A) NA NA NA ug/L 20 1000 (S) / 1300 (A) NA NA NA ug/L	Units Linit ACTION LEVEL $5/20/2003$ $11/13/2003$ $5/12/2004$ $10/27/04$ mg/L 5 0.2 <0.005	Units ACTION LEVEL $5/202003$ $11/132003$ $5/122004$ $1027/04$ $54/05$ mg/L 5 0.2 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	Limit ACTION LEVEL $5/202003$ $11/132003$ $5/122004$ 102704 54405 $11/205$ mg/L 5 0.2 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Units ACTION LEVEL 5/20/2003 11/1/1/2003 5/12/2004 10/27/04 5/40/55 1/1/205 4/26/06 mg/L 5 0.2 <0.005	UnitiACTION LEVEN520200311/13/20035/12/200410/07/20154/0511/2054/200610/2060mg/L50.2-0.005-0.0	UnityACTION LEVEL50020011/13/20051/200410/200454/200411/200542/80610/200654/00550005600055000560	<table-container> Units ACTION LEVIE 520200 11/3200 59/200 10/270 54/05 11/200 42000 11/200 54/07 11/200 42000 11/200 54/07 11/200 11/200 54/07 11/200</table-container>	Unity ACTON LLVLIA Stances 11.7.207 37.207 <t< td=""><td>Unity Introde Symple Bigss Bigss</td></t<>	Unity Introde Symple Bigss Bigss

(O) = Ohio EPA Primai

(A) = Action Level

D = DETECTED

	T T •/	Detection Limit	MCL/SMCL/ ACTION LEVEL	MW-4S															
PARAMETERS	Units			10/17/1995	1/15/1996	4/22/1996	7/29/1996	2/11/1997	4/28/1997	7/7/1997	10/6/1997	6/24/1998	12/16/1998	7/20/1999	4/28/2000	11/27/2000	5/30/2001	10/17/2001	5/8/2002
Inorganics																			
CYANIDE	mg/L	5	0.2	< 0.005	NA	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.005
SULFIDE	mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	2	< 0.05
Metals																			
ALUMINUM ug/L 0.05 to 0.2 mg/L (S)			70.0	210.0	<50.0	<200.0	<500.0	<500.0	<500.0	<500.0	<500.0	660.0	<500.0	<50.0	<50.0	NA	NA	NA	
ANTIMONY	ug/L	4	6	<5.0	<5.0	<5.0	<60.0	6.5	<4.0	<4.0	8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
ARSENIC	ug/L	5	50	3.0	6.0	22.0	14.7	17.0	34.0	1.7	18.0	19.0	10.0	11.0	11.6	7.0	17.0	14.0	15.2
BARIUM	ug/L	10	2000	420.0	420.0	570.0	660.0	560.0	520.0	604.0	458.0	<10.0	469.0	532.0	487.0	409.0	531.0	455.0	NA
BERYLLIUM	ug/L	0.5	4.0	<5.0	<5.0	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.2	<1.0	<1.0	< 0.50
CADMIUM	ug/L	5	5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0
CALCIUM	mg/L	0.05		140	130	130	152	140	130	140	122	130	136	154	131	140	150	140	131
CHROMIUM	ug/L	5	100	<20.0	<20.0	<20.0	<10.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<10.0	<10.0	<5.0
COBALT	ug/L	50		<20.0	<20.0	<20.0	<50.0	<100.0	<100.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<10.0	<10.0	<20.0	<50.0
COPPER	ug/L	20	1000 (S) / 1300 (A)	<10.0	<10.0	<10.0	<25.0	<20.0	<20.0	10.0	<10.0	16.0	<10.0	<20.0	<20.0	<10.0	NA	NA	NA
IRON	ug/L	30	300 (S)	4100	6900	9700	9500	11000	10000	8200	8600	10000	10000	9400	9400	8700	10300	9700	8940
LEAD	ug/L	2	15 (A)	<2.0	<2.0	<3.0	<3.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
MAGNESIUM	mg/L	0.005		33.0	31.0	31.0	34.0	31.0	32.0	32.0	31.0	29.0	29.0	33.0	31.6	32.0	35.0	35.0	33.4
MANGANESE	ug/L	20	50 (S)	310	260	360	370	320	340	310	260	303	267	256	279	250	310	260	273
MERCURY	ug/L	0.2	2.0	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.20
NICKEL	ug/L	20	100 (O)	<20.0	<20.0	<20.0	<40.0	<40.0	<40.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<10.0	<10.0	<10.0	<20.0
POTASSIUM	mg/L	0.05		11	9.2	8.3	11	11	9.6	10	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	ug/L	5	50	<4.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
SILVER	ug/L	1	100 (S)	<10.0	<10.0	<10.0	<10.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10.0	<10.0	<10.0	<1.0
SODIUM	mg/L	0.05		48	42	39	43	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	ug/L	1.5	2.0	<2.0	<2.0	<2.0	<10.0	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.0	<1.0	<1.0	<1.5
TIN	ug/L	100		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50.0	<50.0	<50.0	<100.0
VANADIUM	mg/L	0.005		< 0.01	< 0.01	< 0.01	< 0.05	< 1	< 1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.005	< 0.005	< 0.01	< 0.01	0.02	< 0.005
ZINC	ug/L	20	5000 (S)	20	20	10	23	<10.0	11	10	<10.0	<10.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
VOLATILE ORGANICS	D^1	ND	ND	D^2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Method 8260	D ¹ - CARBON	DISULFIDE (7	ug/l)		D ² - (ACETONE (5u	g/l), CARBON	DISULFIDE (2	ug/l))										
SEMI-VOLATILE ORGANICS			ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Method 8270		Varies	Varies														-		
PESTICIDES/PCB'S				ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Method 8081 Varies Varies			Varies																
Field Parameters																			
TEMPERATURE	°C			17.2	16.1	16.7	18.3	13.3	12.8	13.3	15.0	13.9	14.4	NM	13.3	12.3	13.9	14.9	14.3
рН	S.U.		6.5-8.5 (S)	7.2	7.1	7.2	7.1	7.1	7.3	7.1	7.0	7.00	7.10	7.10	7.00	6.88	6.60	7.20	7.10
SPECIFIC CONDUCTA	umhos/cm			871	858	913	890	1100	1100	1100	975	1050	1100	1050	1110	1207	990	1150	980

(O) = Ohio EPA Primary Maximum Contaminant Level

ND = NOT DETECTED

NM = NOT MEASURED

(A) = Action Level

D = DETECTED

NA = NOT ANALZED

	Units	Detection Limit	MCL/SMCL/	MW-4S													
PARAMETERS			ACTION LEVEL	11/1/2002	5/20/2003	11/13/2003	5/12/2004	10/27/04	5/4/05	11/2/05	4/26/06	10/26/06	5/8/07	11/14/07	6/17/08	11/4/08	7/8/09
Inorganics																	
CYANIDE	mg/L	5	0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SULFIDE	mg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Metals																	
ALUMINUM	ug/L		0.05 to 0.2 mg/L (S)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTIMONY	ug/L	4	6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
ARSENIC	ug/L	5	50	8.6	11.6	9.8	12.2	<5.0	6.5	7.3	7.2	9.5	9.4	7.5	9.0	10.4	<5.0
BARIUM	ug/L	10	2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	ug/L	0.5	4.0	< 0.50	<0.5	< 0.50	<0.5	<0.50	<0.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
CADMIUM	ug/L	5	5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CALCIUM	mg/L	0.05		144	164	160	159	104	106	92.4	95.0	108.0	109.0	97.3	97.3	103.0	98.4
CHROMIUM	ug/L	5	100	<5	<5	<5	<5	<5	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
COBALT	ug/L	50		<50	<50	<50	<50	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
COPPER	ug/L	20	1000 (S) / 1300 (A)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
IRON	ug/L	30	300 (S)	8600	9590	7530	9180	2990	2950	3140	3120	3600	3510	3270	3140	3440	3210
LEAD	ug/L	2	15 (A)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MAGNESIUM	mg/L	0.005		34.9	37.9	35.1	36.7	30.4	30.2	27.6	27.5	30.8	30.9	28.2	28.0	29.8	28.7
MANGANESE	ug/L	20	50 (S)	235	266	218	271	182	181	196	214	231	243	206	236	231	241
MERCURY	ug/L	0.2	2.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20
NICKEL	ug/L	20	100 (O)	<20	<20	<20	<20	<20	<20	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
POTASSIUM	mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	ug/L	5	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
SILVER	ug/L	1	100 (S)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
SODIUM	mg/L	0.05		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	ug/L	1.5	2.0	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
TIN	ug/L	100		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
VANADIUM	mg/L	0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
ZINC	ug/L	20	5000 (S)	<20	<20	<20	<20	<20	<20	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
VOLATILE ORGANIC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Method 8260		Varies	Varies														
SEMI-VOLATILE ORGANICS				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Method 8270 Varies Varies																	
PESTICIDES/PCB'S				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Method 8081		Varies	Varies														
Field Parameters																	
TEMPERATURE	°C			15.0	14.2	15.5	14.7	13.5	13.9	14.1	13.7	13.9	13.9	14.2	14.9	14.1	16.6
рН	S.U.		6.5-8.5 (S)	6.96	6.90	7.00	6.42	7.39	7.43	7.42	7.30	7.35	7.35	7.29	7.38	7.27	7.38
SPECIFIC CONDUCTAN	umhos/cm			1123	1069	741	920	747	542	673	618	535	535	587	566	489	708

(O) = Ohio EPA Primar

(A) = Action Level

D = DETECTED